Numerical Simulation of Junction Angle and Discharge Ratio on Separation Zone Dimensions at Open Junction Channels

Document Type : Research Paper

Author

Abstract

The confluence of two streams creates a complex flow which accelerates downstream. In a junction area, the separation zone is developed in the main channel. By decreasing the longitudinal velocity in the separation zone the sedimentation and blocking of section are increased. In this research, the separation zone dimensions for the junction 30,45, 60 and 90, and discharge ratios are simulated by using the FLUENT software. The Volume of Fluid (VOF) scheme and the RSM turbulence model were used for numerical simulation. The results showed that reducing the junction angle leads to decreasing separation zone dimensions at the junction in the main channel. Results also showed that the model simulated the experimental velocity values by an average of 4 percent accuracy. The maximum width of separation zone is about 50% of the main channel width occurred at an angle of 90° of junction channel, and the minimum dimensions of the flow separation zone near zero and occurred at the junction angle of 30°. Furthermore, increasing junction angle widens the separation zone dimensions. Maximum and minimum separation zone dimensions occurred at 90 and 30 degree of junction, respectively. Further changes in the discharge ratio have a great effect on separation zone dimensions and disappear when the discharge ratio is decreased. Decreasing junction angle and increasing the discharge ratio simultaneously, can reduce the separation zone dimensions and therefore, the problems developed the junction.

Keywords


  1. قبادیان، ر، م. شفاعی بجستان و آ، آذری. 1387. بررسی تاثیر زاویه اتصال بر الگوی فرسایش و رسوب گذاری در محل تلاقی رود با استفاده از شبیه فیزیکی. مجله پژوهش کشاورزی (آب خاک و گیاه در کشاورزی)، (5)8: 107-122.
  2. بغلانی، ع. 1390. شبیه سازی فرسایش و انتقال رسوب در محل تلاقی آبراهه ها با استفاده از روش حجم­های محدود. فصلنامه مهندسی منابع آب ایران. 4(10): 12-1.
    1. Best, J.L., and I. Reid. 1984. Separation zone at open-channel Junctions. J Hydraul. Eng, ASCE 110: 1588-1594.
    2. Bonakdari, H., K.G., Lipeme. and X. Wang, 2011. Experimental validation of CFD modeling of multiphase flow through open channel confluence, 2176-2183. World Environ and Water Resour. Congress, ASCE, California, United States.
    3. FLUENT 6.3 User's Guide. 2006. Fluent Incorporated, Lebanon, N.H.
    4. Goudarzizadeh, R., S. H., Mousavi Jahromi, and N. Hedayat., 2010. Simulation of 3D flow using numerical model at open-channel confluences, World Acad Sci, Engin. Technol. 47: 650-655.
    5. Hsu, C.C., F.S., Wu, and W.J. Lee, 1998. Flow at 90° equal-width open channel junction, J. Hydr. Eng. ASCE 124:186-191.
    6. Huang, J., Y. G., Lai, and J. L. Weber, 2002. Three-dimensional numerical study of flows in open channel Junctions, J. Hydraul. Eng, ASCE, 128: 268-280.
    7. Li, C.W., and C., Zeng, 2008. 3D Numerical modelling of flow divisions at open channel junctions with or without vegetation. Adv. Water Resour. 32:49–60.
    8. Ramamurthy, A. S., Q., Junying, and V., Diep, 2009. Closure to numerical and experimental study of dividing open-channel flows, J. Hydraul. Eng. ASCE 135:12. 1112-1113
    9. Weber, L.J., E.D., Shumate, and N. Mawer, 2001. Experiments on flow at a 90° open-channel junction. J. Hydr. Eng. 127: 340-350.
    10. Xiekang, W., W., Xianye, L.U., Weizhen, and LI.U. Tonghuan, 2007. Experimental study on flow behavior at open channel confluences, front. Archit. Civ. Eng. China 12: 211–216.