Investigation the effects of water defficency stress on the photosynthetic parameters in Salvia plant probed by JIP test

Document Type : Research Paper

Authors

1 Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

2 Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

3 Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran .& Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences ,Islamic Azad University,Tehran,Iran.

Abstract

Water defficency stress is one of the most important abiotic stresses that can affect plant growth and development. Salvia is also one of the important medicinal plants that has several medicinal properties. In the present study, the effects of different levels of water deficincy including 25, 50, 75 and 100% of soil field capacity on photosynthetic parameters in two sensitive and resistant species of salvia were investigated by JIP-test method. The results of this study showed that with increasing water defficency stress the number of active reaction centers (RC / CS), the amount of electron transfer in the photosynthetic system (ETo / CS), the efficiency of light reactions in photosystem II (φPo / (-1 φPo)) , Efficiency of biochemical reactions in electron transfer chain (ψo / (1- ψo)), efficiency of electron delivery to photosystem I (δRo / (1- δRo)) and performance index of electron transfer from the beginning of photosystem II to the end of I (PI total) has been reduced and the amount of energy loss in antenna chlorophylls (DIo / CS) has increased. The results of this study also showed that the negative effects of water defficency stress on these parameters in the susceptible species of Salvia (Salvia officinallis) were more than the resistant species (Salvia virgata).

Keywords


  1. Bansal, A. Thakur, S. Singh, and M. Bakshi, “Changes in crop physiology under drought stress : A review,” J. Pharmacognsy Phytochem., vol. 8, no. 4, pp. 1251–1253, 2019.
  2. D. Costa, “Plant Resistance to Abiotic Stresses,” Plants, vol. 8, no. 553, pp. 10–13, 2019.
  3. Barari and A. A. Branch, “Effect of Drought stress and its mechanism in plants,” Intwernational Jouranal Life Sci., vol. 10, no. 1, pp. 1–6, 2018, doi: 10.3126/ijls.v10i1.14509.
  4. Yang, Y. Li, H. Chen, and J. Huang, “Photosynthetic Response Mechanism of Soil,” Plants, vol. 9, no. 363, pp. 1–15, 2020.
  5. Ö. Arslan, A. S. B. Nalçaİyİ, Ş. Ç. Erdal, V. Pekcan, and Y. Kaya, “Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics,” Photosynthetica, vol. 58, no. S1, pp. 163–172, 2020, doi: 10.32615/ps.2019.171.
  6. Jafarinia and M. Shariati, “Effects of salt stress on photosystem II of canola plant ( Barassica napus , L .) probing by chlorophyll a fluorescence measurements,” Iran. J. Sci. Technol., pp. 71–76, 2012.
  7. Stavridou, R. J. Webster, and P. R. H. Robson, “Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments,” Ann. Bot., vol. 124, pp. 653–674, 2019, doi: 10.1093/aob/mcz009.
  8. Oukarroum, S. El Madidi, G. Schansker, and R. J. Strasser, “Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering,” Environ. Exp. Bot., vol. 60, no. 3, pp. 438–446, Jul. 2007, doi: 10.1016/j.envexpbot.2007.01.002.
  9. Karami, M., Hossini, S. E., Naghi Shahbi, M., Ebrahimzadeh, M. A. and Alemy, “Salvia limbata: Botanical, Chemical, Pharmacological and Therapeutic Effecte,” vol. 3, no. 1, pp. 108–127, 2015.
  10. S. Reto J. Strasser, Merope Tsimilli- Michael, Analysis of the Fluorescence Transient Reto J . Strasser Merope Tsimilli- Michael Ministry of Education and Culture , Nicosia CY-1434 , Cyprus Alaka Srivastava, no. May 2014. 2004. doi: 10.1007/978-1-4020-3218-9.
  11. Heber, V. Soni, and R. J. Strasser, “Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.,” Physiol. Plant., vol. 142, no. 1, pp. 65–78, May 2011, doi: 10.1111/j.1399-3054.2010.01417.x.
  12. Heinrich Krause, S. Somersalo, E. Zumbusch, B. Weyers, and H. Laasch, “On the Mechanism of Photoinhibition in Chloroplasts. Relationship Between Changes in Fluorescence and Activity of Photosystem II,” J. Plant Physiol., vol. 136, no. 4, pp. 472–479, 1990, doi: 10.1016/S0176-1617(11)80038-6.
  13. R. Falqueto, R. A. da Silva Júnior, M. T. G. Gomes, J. P. R. Martins, D. M. Silva, and F. L. Partelli, “Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones,” Sci. Hortic. (Amsterdam)., vol. 224, no. June, pp. 238–243, 2017, doi: 10.1016/j.scienta.2017.06.019.
  14. Dabrowski, A. H., Kalaji, H. M., Goltsev, V., & Piotr, “Exploration of Chlorophyll a Fluorescence and Plant Gas Exchange Parameters as Indicators of Drought Tolerance in Perennial Ryegrass,” sensors, vol. 19, pp. 27–36, 2019.
  15. Rapacz, M. Wójcik-jagła, A. Fiust, and H. M. Kalaji, “Genome-Wide Associations of Chlorophyll Fluorescence OJIP Transient Parameters Connected With Soil Drought Response in Barley,” Front. Plant Sci., vol. 10, no. February, pp. 1–21, 2019, doi: 10.3389/fpls.2019.00078.
  16. Mathur, S. I. Allakhverdiev, and A. Jajoo, “Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum).,” Biochim. Biophys. Acta, vol. 1807, no. 1, pp. 22–9, Jan. 2011, doi: 10.1016/j.bbabio.2010.09.001.
  17. M. Kalaji, A. Jajoo, A. Oukarroum, and M. Brestic, “Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions,” Acta Physiol. Plant., vol. 38, no. 102, pp. 1–11, 2016, doi: 10.1007/s11738-016-2113-y.
  18. G. Choi and H. J. Jeong, “Comparison of Chlorophyll Fluorescence and Photosynthesis of Two Strawberry Cultivars in Response to Relative Humidity,” Horticutural Sci. Technol., vol. 38, no. 1, pp. 66–77, 2020.
  19. Wang et al., “Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves,” Co. Biol. Biol., vol. 7, pp. 1–9, 2018, doi: 10.1242/bio.035279.
  20. Zushi, S. Kajiwara, and N. Matsuzoe, “Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit,” Sci. Hortic. (Amsterdam)., vol. 148, pp. 39–46, Dec. 2012, doi: 10.1016/j.scienta.2012.09.022.
  21. Mehta, S. I. Allakhverdiev, and A. Jajoo, “Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum),” Photosynth. Res., vol. 105, no. 3, pp. 249–255, Sep. 2010, doi: 10.1007/s11120-010-9588-y.
  22. Xia, Y. Li, and D. Zou, “Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements,” Aquat. Bot., vol. 80, no. 2, pp. 129–137, Oct. 2004, doi: 10.1016/j.aquabot.2004.07.006.
  23. M. Kalaji, Govindjee, K. Bosa, J. Kościelniak, and K. Zuk-Gołaszewska, “Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces,” Environ. Exp. Bot., vol. 73, no. 1, pp. 64–72, Nov. 2011, doi: 10.1016/j.envexpbot.2010.10.009.
  24. A. Bacarin, S. Deuner, F. S. P. da Silva, D. Cassol, and D. M. Silva, “Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L,” Brazilian J. Plant Physiol., vol. 23, no. 4, pp. 245–253, 2011, doi: 10.1590/S1677-04202011000400001.
  25. Koller, V. Holland, and W. Brüggemann, “Effects of drought stress on the evergreen Quercus ilex L., the deciduous Q. robur L. and their hybrid Q. × turneri Willd,” Photosynthetica, vol. 51, no. 4, pp. 574–582, 2013, doi: 10.1007/s11099-013-0058-6.
  26. Kocheva, P. Lambrev, G. Georgiev, V. Goltsev, and M. Karabaliev, “Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress,” Bioelectrochemistry, vol. 63, no. 1–2, pp. 121–124, Jun. 2004, doi: 10.1016/j.bioelechem.2003.09.020.
  27. J. Strauss, G. H. J. Krüger, R. J. Strasser, and P. D. R. V Heerden, “Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P,” Environ. Exp. Bot., vol. 56, no. 2, pp. 147–157, Jun. 2006, doi: 10.1016/j.envexpbot.2005.01.011.
  28. H. Chang, K. T. Cheng, P. C. Huang, Y. Y. Lin, L. J. Cheng, and T. S. Cheng, “Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure,” Acta Physiol. Plant., vol. 34, no. 3, pp. 1165–1176, 2012, doi: 10.1007/s11738-011-0913-7.
  29. M. Kalaji et al., “Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.,” Plant Physiol. Biochem., vol. 81, no. April, pp. 16–25, Aug. 2014, doi: 10.1016/j.plaphy.2014.03.029.
  30. M. Kalaji, L. Račková, V. Paganová, T. Swoczyna, S. Rusinowski, and K. Sitko, “Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill?,” Environ. Exp. Bot., vol. 152, no. October 2017, pp. 149–157, 2018, doi: 10.1016/j.envexpbot.2017.11.001.