Prediction of the Daily Rainfall at Ungauged Regions Applying the Spatio – Temporal Neyman - Scott Rectangular pulses Method (Case Study: The Walnut Gulch Watershed)

Author

Abstract

       Rainfall data play an important role in hydrological sciences. Lack of sufficient or qualified data usually leads to unreliable and inadequate results. In such cases, synthetic time series, e.g., generated rainfall time series, are of great importance for performing the watershed management activities. In most previous studies, statistical methods such as those of Markov chain and ARIMA methods have been applied for the rainfall generation at a single site. As the rainfall spatial pattern has a significant effect on the flow hydrograph characteristics, multisite rainfall generation plays its vital role in hydrology. In the present research, the Spatio-temporal Neyman-Scott rectangular pulses (STNSRP) method was applied and fitted to 50-year daily data taken from 20 Rain gauges in the Walnut Gulch watershed, USA. Rain gauges were divided into real rain gauges (14) and virtual rain gauges (6), and the performance of STNSRP model was assessed. Different statistics such as mean, variance and probability of dry days were calculated and compared with both the generated and the observed rainfall time series.  The IDW method was used to produce rainfall maps using the generated rainfall values at real and virtual rain gauges. Results revealed that the STNSRP model has the ability to match the observed statistics adequately. Also, the rainfall map generated using the virtual rain gauges has less error as compared with the map generated from the rainfall values only at the real rain gauges.

Keywords


1)                  نسیمی علیرضا و ضرغام محمدی. 1393، ارزیابی آسیب‏پذیری استان یزد در برابر خشکسالی با استفاده از شاخص بارش معیار و روش‌های زمین‏آماری، مجله مهندسی منابع آب صفحه 79-90 :7.
2)                  زارعی سهیلا و احمد فاخری فرد. 1393، ارزیابی ارتباط زمانی خشکسالی‌های هواشناسی و آبشناسی با کاربرد برنامه‌ریزی‌های ژنتیک (GP) و سامانه‌ی استنتاج تطبیقی عصبی- فازی (ANFIS) در حوضه‌ی آبخیز صوفی‌چای، مجله مهندسی آب صفحه 37-50 :7.
3)                   Cowpertwait, P.S.P. 1991. Further developments of the Neyman-Scott clustered point process for modelling rainfall, Water ResourRes, 27: 1431-1438.
4)                   Cowpertwait, P.S.P. 1995. A generalized spatial-temporal model of rainfall based on a clustered point process. Proceedings of the Royal Society of London, Series A 450, pp: 163-175.
5)                   Cowpertwait, P.S.P. 2002. A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes, Water ResourRes Research, 38 (8), 1131-1138.
6)                   Cowpertwait, P.S.P., C. Kilsby,., and P.E. O’Connell.2002. A space-time Neyman-Scott model of rainfall: empirical analysis of extremes. Water Resources Research, Vol. 38:1-14.
7)                   Cowpertwait, P.S.P., P.E. O’Connell,. A.V. Metcalfe, and, J.A.  Mawdsley1996a. Stochastic point process modeling of rainfall: I. Single site fitting and validation. Hydrol. 175: 17-46.
8)                   Cowpertwait, P.S.P., P.E.  O’Connell, A.V. Metcalfe, and J.A. Mawdsley. 1996. Stochastic point process modelling of rainfall: II. Regionalization and disaggregation. Hydrol. 175: 47-65.
9)                   Goodrich, D. C., T. O. Keefer, C. L. Unkrich, M. H. Nichols, H. B. Osborn, J. J. Stone, and J. R. Smith. 2008. Long-term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44: 5 doi:10.1029/2006WR005782.
10)               Luyckx G., P. Willems & J. Berlamont (1998). Influence of the spatial variability of rainfall on sewer system design. In: Hydrology in a changing environment, H. Wheater and C. Kirby (ed.), John Wiley & Sons, Chichester, vol. III, 339-349; (ISBN 0-471-98680-6)
11)               Mehrotra, R., and A. Sharma. 2007. Preserving low-frequency variability in generated daily rainfall sequences. Journal of Hydrolo.345: 102-120.
12)               Rodriguez-Iturbe, I., Cox, D. R., and V. Isham. 1987. Some models for rainfall based on stochastic point processes. Proc. R Soc. Lond. A 410, 269–288.
13)               Shepard, D. 1968. A two dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 ACM Nat. Con: 517–524.
14)               Srikanthan, R, and G. Pegram. 2009. A nested multisite daily rainfall stochastic generation model, J. Hydrol. 371:142–153.
15)               Srikanthan R. and T.A. McMahon. 2001. Stochastic generation of annual, monthly and daily climate data: A review, Hydrol Earth Sys Sci, 5: 653–670.
16)               Willems, P. 2001. A spatial rainfall generator for small spatial scales. Hydrol, 252:126-144.