Subsurface drip irrigation (SDI) is widely used in arid and semi-arid regions due to water saving. In order to investigate the moisture distribution pattern in SDI, the laboratory experiments were carried out in a transparent plexy-glass tank (0.5m *1.22m * 3m) using three different soil textures (i.e. medium, heavy and fine). The drippers were installed at 2 different soil depths (15cm and 30 cm). The emitter outflows were considered as 2, 4 and 4 lit/hr. Also, these experiments were carried out for two continuous and pulse irrigation systems. In pulse irrigation, the pulse cycles were considered 30-30, 20-40 and 40-20 min. The first number was the irrigation time (on) and the second number was the rest time (off) of the system in each cycle. The results of this research showed that moisture advance front with increasing the rest time move more horizontally for SDI with pulsed flow. Also, horizontal distribution of wetted front (for the same water volume of at the end of irrigation) for low emitter discharges was more than emitter with high outflow rate. As well as, the maximum depth of wetted front was related to emitters with higher discharge rate in the light texture, and in heavy texture is related to lesser outflow rate. The results showed that the horizontal distribution for pulse irrigation (20-40) was more than two other pulses (40-20 and 30-30) and continuous application.
3. Ekramnia, F. 1997. Evaluating of kinds of emitters and technical and economical instructions to select the suitable emitter. M.Sc Thesis, Faculty of Agriculture, University of Tehran, Karaj, Iran. 114p. (In Persian)
6. Farajzadeh, K. 2015. Simulation of pulsed drip irrigation and determination of the wetted diameter and depth and the most suitable on-off ratio. M.Sc Thesis, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. 110p. (In Persian)
7. Grimes, D.W., Munk, D.S. and Goldhamer, D.A., 1990. Drip irrigation emitter depth placement in a slowly permeable soil. In Visions of the future-Proceedings of the 3rd National Irrigation Symposium-ASAE Pub. 4-90. (pp. 248-254). American Society of Agricultural Engineers.
Karimi, B. 2013b. Optimization and management of moisture and nitrate distribution in surface and subsurface drip irrigation systems using dimensional analysis. Ph.D. Thesis, Faculty of Agriculture, University of Tehran, Karaj, Iran. 185p. (In Persian)
18. Miller, M. L., Charlesworth, P. B., Katupaitiya, A. and Muirhead, W. A. 2000. A comparison of new and conventional subsurface drip irrigation systems using pulsed and continuous irrigation management. Proceeding of Conference Irrigation Association Australia, May 23-25, 2000. Melbourne, Australia. pp: 391-397.
23. Sharif-Bayanolhagh, M.H. 1998. Soil moisture distribution from a point source in sloping fields. M.Sc. Thesis, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran. 126p. (In Persian)
Karimi, B., & Karimi, N. (2022). Evaluation of moisture advance front pattern in subsurface drip irrigation with continuous and pulsed flow. Water Resources Engineering, 14(51), 21-38. doi: 10.30495/wej.2022.20462.2120
MLA
Bakhtiar Karimi; Nazir Karimi. "Evaluation of moisture advance front pattern in subsurface drip irrigation with continuous and pulsed flow". Water Resources Engineering, 14, 51, 2022, 21-38. doi: 10.30495/wej.2022.20462.2120
HARVARD
Karimi, B., Karimi, N. (2022). 'Evaluation of moisture advance front pattern in subsurface drip irrigation with continuous and pulsed flow', Water Resources Engineering, 14(51), pp. 21-38. doi: 10.30495/wej.2022.20462.2120
VANCOUVER
Karimi, B., Karimi, N. Evaluation of moisture advance front pattern in subsurface drip irrigation with continuous and pulsed flow. Water Resources Engineering, 2022; 14(51): 21-38. doi: 10.30495/wej.2022.20462.2120