Analysis of Impact of land Use on Simulation Results of Basin Hydrological Parameters Nirchay watershed by using SWAT model

Document Type : Research Paper

Authors

1 Associate Professor, Department of Geomorphology, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Master Student, Remote Sensing, GIS, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

Impact of land use on hydrological processes and runoff of watershed can help manage water resources challenges and proper planning in watershed management. Hydrological models are a simplified representation of a real hydrological system that studies the basin's performance, so selecting a model requires identifying the capability and limitation of basin hydrology models. In this study, Landsat satellite imagery (OLI-TM) for years (1990-2000-2018) was used to investigate the impact of land use on runoff in the Nai Chai River Basin. Initially, the relevant images were obtained and preprocesses were applied, then the classification was done using the object-oriented method and the nearest-neighbor algorithm. Validation was used for sensitivity analysis, calibration. According to the coefficients NS, R2, P and R obtained at the calibration stage (0.74, 0.75, 0.88, 0.82, respectively), and at the validation stage (0.68 , 0.68, 0.72, 0.90, 0.79) respectively, indicate that these statistics have an acceptable performance in predicting the variables under study in the watershed. Therefore, the results of this study showed that the SWAT model has the best performance from runoff simulation in the Ney Chai river basin compared to observational data during the validation period.

Keywords


1)        Abbaspour, K.C. (2007). User Manual for SWAT-CUP SWAT Calibration and Uncertainty Analysis Programs, Swiss Federal lnstitute of Aquatic Science and Technology, Eawag. Dubendorf. Switzerland, 95,pp. 1-16.
2)        Abbaspour, K.C., Johnson, A., and Van Genuchten, M.Th. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3:PP. 1340-1352.
3)        Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Hydrology. 333,pp. 413-430.
4)        Arabi, M., Govindaraju, R. S., and Hantush, M. M. (2007): A probabilisticapproach for analysis of uncertainty in the evaluation of watershed management practices, J. Hydrol., 333,pp. 459–471.
5)        Arnold, J.G.( 1996). Estimating hydrologic budgets for three Illinois Watersheds. Journal of Hydrology, 176.PP.57-77.
6)        Arnold, J.G., Muttiah, R.S., Srinivasan, R., and Allen, P.M. (2000). Regional estimation of base flow and groundwater recharge in the Upper Mississippi River basin. J. Hydrol., 227: 1-4.PP. 21-40.
7)        Baloch, M. Ames, D. and Tanik, A. (2013). Catchment-Scale Hydrological Response to Climate-LandUse Combined Scenarios: A Case Study for the Kishwaukee River Basin, Illinois, Physical Geography, 29, pp. 79-99.
8)        Betrie. G. D.; Mohamed, Y. A.; Griensven, A. V.; & R. Srimivasan, (2011). Sediment management modeling in the Blue Nile Basin using SAWT model, Hydrolgy Earth syst em Science Discuss, 15,PP. 807-818.
9)        Bossa, A.Y., Diekkrüger, B., Igué, A.M., and Gaiser, T. (2012). Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma. 174, PP. 61-74.
10)    Gholami, Sh.,( 2003). Daily Sediment simulation by semi-distributed SWAT in Mountai watershed (Amame watershed), Pazhouhesh sazandegi Journal, 59,pp .28-33.
11)    Havrylenko SB, Bodoque JM, Srinivasan R, Zucarelli GV, Mercuri P, (2016). Assessment of the soil water content in the Pampas region using SWAT. Catena 137.PP.298–309.
12)    Izadi, M. Ajdari, Akhavan, S. Emamgholizadeh, P. (2013). Swat Model Application in Simulation of Shirin Darreh River, Cultural and Water Services Challenge Conference, Islamic Azad University, Khorasgan Branch, Isfahan,pp. 1-7 (in Persian).
13)    Kavian AS, Golshan M, Rouhani H, Esmaili A, A (2015). Simulation of runoff and sediment load of Haraz River Basin with SWAT intercept. Natural Geography Research, Volume 47, Number 2, pp. 211-197(in Persian).
14)    Leonard, P.B.A. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19:PP.59-98.
15)    Lillesand, ‎T.M., R.W Kiefer, and W.J Chipman. (2009). Remote sensing and Image Interpretation, New York: John Wiley & Sons, Inc., 6th Ed,PP.127- 137.
16)    Lin, B, Chen, X, Yao, H, Chen, Y, Liu, M, Gao, L& James, A (2015), Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecological Indicators, 58,pp 55–63.
17)    López-Vicente M.; Poesen, J.; Navas, A.; Gasparb, L.; & B. Gaspar. (2011). Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees, Catena, PP.201-215.
18)    Mengistu KT (2009) Watershed hydrological responses to changes in land use and land cover, and management practises at Hare Watershed, Ethiopia,pp.341-374.
19)    Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3),pp. 885-900.
20)    Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Binger, R.L., Harmel, R.D., and Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE. 50,pp. 885-900.
21)    Nagelkerke, N.J.D. (1991). A note on a general definition of the coefficient of determination. Biometrika. 78,pp .691-692.
22)    Nash, J.E. and T.E. Sutcliffe.(1970). River flow forcasting through conceptual model, Part I.A discussion of principles. Journal of Hydrology, 10(3),pp.282-290.
23)    Neitch, S. L.; Arnold, J. G.; Kiniry, J. R.; & J. R. Williams,( 2005). Soil and Water assessment tool documentation, ( user's manual),pp. 494.
24)    Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2002). Soil and Water Assessment Tool, User’s Manual, Version 2000, pp. 289-298.
25)    Omani, Tajrishi M. and Abrishamchi A., (2006). River Flow Simulation Using SWAT and GIS Model. 7th International Seminar on River Engineering, February 24-26, Ahvaz Shahid Chamran University. pp. 1-8 (in Persian).
26)    Palamuleni, L.G. P.M. Ndomba & H.J. Annegarn (2011), Evaluating land cover change and its impact on hydrological regime in Upper Shire river catchment, Malawi, Journal of Regional Environmental Change,No. 11(4), PP.845-855.
27)    Pikounis, M., Aranou, E., Baltas, E., Dassaklis, A., and Mimikou, M. (2003). Application of the SWAT model in the Pinos River in under different land-use Scenarios, Global Nest J., 5: 2.PP. 71-79.
28)    Ramadan. No, parsley. (2014). Monitoring urban land use changes over the past four decades in Esfarayen using remote sensing technology. National Geomatics Conference. National mapping agency. pp. 1886-1869 (in Persian).
29)    Saadati, H., Golami, Sh., Sharifi, F., and Ayobzade, A.( 2006). Investigation the effect of land use change on the surface runoff, (case study, Kasilian), Journal of Natur. Resour. Iran, 59:PP. 301-313.
30)    Saadati, H.; Gholami, S. A.; Sharifi, F.; & S. A. Ayoubzadeh,( 2006). An investigation of the effects of land use change on simulating surface runoff using SWAT mathematical model (Case Study: Kasilian Catchment Area), Iranian Journal of
31)    Salmani, H.; Mohseni Saravi, M.; Rouhani, H.; & A. Salajeghe, (2012). Evaluation of Land Use Change and its Impact on the Hydrological Process in the Ghazaghli Watershed, Golestan Province, watershed management Journal, 3(6),PP. 43-59.
32)    Santos, J.; Nunes, J.; sampaio, E.; Moreira, M.; Lima, J.; Jacinto, R.; & J. CorteReal, (2014). Climate and LanduseChange Impacts on hydrological processes and soil erosion in a dry Mediterranean agro-forested catchment, southern Portugal, Hydrology and earth system sciences discussions, 16, PP.715-730.
33)    Siriwardena,  L. Finlayson, B. L. & T. A. McMahon,( 2006). The impact of land use change on catchment hydrology in large catchment: The Comet River, Central Queensland, Australia, Journal of Hydrology, 326, pp.199-214.
34)    Wang, S.; Kang, S.; Zhang, L.; & F. Li, (2008). Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China, Journal of Hydrological Processes, 22, PP.2502-2510.
35)    Wei, W. Chen, L. Fu, B. Huang, Z. Wu, D. & L. Gui, (2007). The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China, Journal of Hydrology, 335, pp.247- 258.
36)    Yarahmadi, D. (2014). Hydroclimatological Analysis of Urmia Lake Surface Oscillations. Natural Geography Research, Thirty-Second Year, No. 20, pp.77-92(in Persian).
37)    Zahedi, A. Mohammadi, M. And Brady, S. (2012). Evaluation of Urban Land Use Change and Impact of Hydrology on Pilgrimage Basin Proceedings of the 7th National Conference on Watershed Management Science and Engineering, pp. 134-141 (in Persian).
38)    Zhixiang L, Songbing Z , Honglang X, Chunmiao Z, Zhenliang Y, Weihua W, (2015). Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Physics and Chemistry of the Earth 79PP.76–85.