Potential of Karstic Water Resources Using RS, GIS and AHP (Case Study: Lilly and Kenno Anticlines in the North East of Khuzestan)

Document Type : Research Paper

Authors

1 Water Resources Specialist, Kohgiluyeh and Boyer Ahmad Regional Water Company, Yasuj, Iran

2 Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran

3 Isfahan Province Regional Water Company,iran

4 Deputy Director of Conservation and Exploitation - Kohgiluyeh and Bouri Ahmad Regional Water Company- iran

Abstract

The discovery of groundwater resources as one of the ways of drinking water in the world is imperative and inevitable given the increasing need of the world for water.The objective this study is investigation of Karstic Water Resources Potential in the Leili-Keyno anticlines on the northeast of Khuzestan province. For this purpose, effective parameters of Karstic Water Resources Potential such as rainfall, lineament density, distance from lineament, slope, drainage density, lithology, land use and temperature are identified and evaluated. Using the expert group opinion and to help the Analytical Hierarchy Process (AHP) The weight of effective layers in the potential of karst water resources was calculated: precipitation (0.331), linear density (0.261), distance from linearity (0.151), slope (0.098), water drainage density (0.064) , Lithology (0.047), vegetation (0.029) and temperature (0.024) and finally, Karstic Water Resources Potential map extracted with integration of related layers by overlapping in ArcGIS software and using the Raster Calculator module. Based on this method, the area is classified into five categories, viz. very high, high, moderate, poor and very poor. The northwest foreland (Garu formation) has the least potential. Springs and dolins are located in the areas with high potential in central part of the anticlins.

Keywords


1)       افراسیابیان، ا. 1377. اهمیت مطالعات و تحقیقات منابع آب کارست در ایران، مجموعه مقالات دومین همایش جهانی آب در سازندهای کارستی، کرمانشاه.
2)       چرچی، ع. کلانتری، ن. و م. ر. کشاورزی. 1389. بررسی آبخوان کارستی ادیو شمال شرق استان خوزستان. مجله علمی- پژوهشی پژوهش­های دانش­ زمین، سال اول، شماره1، 96-84.
3)       قدسی پور، ح. 1390. فرآیند تحلیل سلسله مراتبی ((AHP، انتشارت دانشگاه صنعتی امیر کبیر. چاپ نهم، 220 ص.
4)       فتحی زاد،ح.، علیپور،ح.، هاشمی نسب،ن. وکریمی، حُ.1395 .پتانسیل یابی آبهای زیرزمینی از طریق فرآیند تحلیل سلسله مراتبی  (AHP) با استفاده از سنجش از دور و سامانه اطلاعات جغرافیایی در حوضه مهدیشهر . نشریه هیدروژئومورفولوژی 8: 1-20.
5)       رحیمی،دو .موسوی،س.ح.1392 .پتانسیل یابی منابع آب زیرزمینی با استفاده از مدل AHP و تکنیک  GIS(مطالعه موردی: حوضه آبخیز شاهرود-بسطام  .(نشریه جغرافیا و برنامه ریزی17 (44) : 139-159.
6)       رضایی مقدم،م.ح.، رحیمپور،ت. و نخستین روحی،م.1395 .پتانسیل یابی منابع آب زیرزمینی با استفاده از فرآیند تحلیل شبکه ای در محیط سامانه اطلاعات جغرافیایی )مطالعه موردی: حوضه های آبریز منتهی به دشت تبریز). نشریه اکوهیدرولوژی 3(3): 379-389.
7)       کریمی وردنجانی، ح. 1389. هیدروژئولوژی کارست: مفاهیم و روش­ها. چاپ اوّل، انتشارات ارم شیراز، 414 ص.
8)       محمدی بهزاد، ح. ر. 1390. شناسایی منشأ تغذیه و بررسی خصوصیات فیزیکو- شیمیایی چشمه کارستی  بی­بی­تلخون. پایان نامه کارشناسی ارشد، دانشکده علوم­ زمین، دانشگاه شهید چمران اهواز.
9)       مفیدیفر،م.، المدرسی، س.ع.، اصلاح،م. وملک زاده بافقی،شُ.1393 .پتانسیل یابی منابع آب زیرزمینی با استفاده از مدل تصمیمگیری تحلیل سلسه مراتبی در محیط ) GISمطالعه موردی: حوضه دشت یزد اردکان). همایش ملی کاربرد مدل های پیشرفته تحلیل فضایی (سنجش از دور و GIS) در آمایش سرزمین. دانشگاه آزاد اسلامی واحد یزد. ص 1-10.
مطیعی، ه. 1374. زمین­شناسی نفت زاگرس 1و 2. انتشارات سازمان زمین­شناسی کشور، 1009 ص.
 
10)     Adiat, K. A. N., Nawawi, M. N. M.  and  K.  Abdullah.  2012.  Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool – A case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology,  440: 75–89.
11)     Chen, K., Blong, R. and  C. Jacobson. 2001. MCE-RISK: integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environ Model Softw, 16: 387–397.
12)     Chenini, I., Mammou,  A. B. and M. E. May. 2010. Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in central Tunisia (Maknassy basin). Water Resour Manag, 24: 921–939.
13)     Chowdhury A., Jha, M. K., Chowdary, V.M.  and  B. C. Mal. 2009. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district,West Bengal, India. Int J Remote Sens, 30(1): 231–250.
14)     Degnan, J. R. and S. F. Clarck. 2002. Fracture-correlated lineaments at Great Bay, Southeastern New Hampshire. U.S. Geological Survey, Open File-Report 2-13.
15)     Dinesh Kumar, P. K., Gopinath, G.  and  P. Seralathan. 2007. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest cost of India. Int J Remote Sens, 28(24): 5583–5601.
16)     Domingos,P., Sangam,S., Mukand,S. andSarawut,N. 2017. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, Remote Sensing and Analytic Hierarchy Process (AHP) technique. Applied Water Science, 7(1): 503-519.
17)     Dunning, D. J., Ross, Q. E. and M. W. Merkhofer. 2000. Multiattribute utility analysis for addressing Section 316(b) of the Clean Water Act. Environ Sci Policy, 3: 7–14.
18)     Etishree,A.,Rajat,A.,Garg,R.D. andGarg,P.K. 2013. Delineation of groundwater potential zone: An AHP/ANP approach. Journal of Earth System Science.122(3): 887-898.
19)     Flug, M., Seitz, H. L. H. and  J. F. Scott. 2000. Multicriteria decision analysis applied to Glen Canyon Dam. J Water Resour Plan Manage ASCE, 126(5): 270–276.
20)     Ford, D. C. and P. W. Williams. 2007. Karst Hydrogelogy and Geomorphology. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester.
21)     Goli Mokhtari, L., Velayati, S. and Z. Dadashzadeh. 2012. Investigation of the relationship between tectonics and karstification. International Conference on Environmental, Biomedical and Biotechnology. IACSIT Press, Singapore, 41: 250-254.
22)     Hyun-Joo,O., Yong-Sung,K., Jong-Kuk,C., Eungyu,P. andSaro,L. 2011. GIS mapping of regional probabilisticgroundwater potential in the area of Pohang City, Korea.JournalofHydrology. 399 (3-4),158-172.
23)     Jha M. K., Chowdhury A., Chowdary V. M. and S. Peiffer. 2007. Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag, 21(2): 427–467.
24)     Jha, M. K., Chowdary, V. M. and A. Chowdhury.  2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J, 18(7): 1713–1728.
25)     Jha, M. K. and S. Peiffer. 2006. Applications of remote sensing and GIS technologies in groundwaterhydrology: past, present and future. BayCEER, Bayreuth, Germany, 201 p.
26)     Joubert, A., Stewart T. J. and R. Eberhard. 2003. Evaluation of water supply augmentation and water demand management options for the City of Cape Town. J Multi-Criteria Decis Anal, 12(1): 17–25.
27)     Kolat, C., Doyuran, V., Ayday C. and M. Süzen. 2006. Preparation of a geotechnical microzonation modelusing geographical information systems based on multicriteria decision analysis. Environ Geol,  87: 241–255.
28)     Nagarajan,M. andSingh,S. 2009. Assessment of Groundwater Potential Zones using GIS Technique. J. Indian Soc. Remote Sens. 37: 69–77.
29)     Machiwal, D.,  Jha, M. K. and B. C. Mal. 2010. Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques. Water Resour Manage,  25:1359–1386.
30)     Madrucci V., Taioli, F. and C. C. de Araújo. 2008. Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. Hydrol, 357: 153–173.
31)     Mendoza, G. A. and H. Martins. 2006. Multi-criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms. For Ecol Manag 230 (1–3): 1–22.
32)     Millanovic, P. T. 1981. Karst Hydrogeology. Water resourses Publication. Littleton, Colorado, USA.
33)     Moore, G. 1982. Groundwater applications of remote sensing. Open file report 82 – 240. U.S. Department of Interior Geological Survey. EROS Data Center, Sioux Falls, South Dakota.
34)     Moreno-Jimenez, J. M. 2005. A spreadsheet module for consistent consensus building in AHP-group decision making, Group Decision and Negotiation 14: 89–108.
35)     Pereira, J., M. and L. Duckstein. 1993. A multiple criteria decision-making approach to GIS-based land suitability evaluation. Int J Geogr Inf Syst 7(5): 407–424.
36)     Saaty, T. L. 1980. The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York, 287 p.
37)     Shaban, A., Khawlie, M. and C. Abdallah. 2006. Use of remote sensing and GIS to determine recharge potential zones: the case of OccidentalLebanon. Hydrogeol J., 14: 433–443.
38)     Thirumalaivasan, D., Karmegam M. and K.Venugopal. 2003. AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. EnvironModel Softw, 18: 645–656.