Multi-objective conflict resolution model for conjunctive operation from surface and groundwater based on goal programming approach

Document Type : Research Paper

Authors

1 Research Assistant, School of Engineering, Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran

2 Associate Professor, School of Engineering, Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.

Abstract

In this paper, two optimization methodologies for conjunctive operation from surface and groundwater resources are developed. The first proposed methodology consists of an integrated model that is able to consider and analysis supply and water demand management policies, together. In this model, optimum decisions are determined for reservoir-river-groundwater system simultaneous operation for developing water supply and increasing water demands conditions. Also, different climate change scenarios are considered for evaluating the system in the different situations. In this model, using NSGA-II multi-objective optimization model that surface and groundwater allocation are determined with multi-objective goal programming approach for 10-year periods in different climate. For analyzing optimization model, performance criteria are determined for system in the conjunctive operation structure in order to evaluate and rank operation approaches. Finally, using Borda count model, an appropriate solution is chosen on the obtained trade-off among different objectives. In the second methodology, a simulation-optimization model is developed for conjunctive operation from surface and groundwater resooptimum decisions are determined for reservoir-river-groundwater system simultaneous operation under different climate scenarios for developing water supply and increasing demands system. They are presented in the operation rules framework and rule curves in the monthly and weekly time steps. Finally, using fallback bargaining model, an appropriate solution is determined in obtained trade-off among different objectives of stakeholders. The results show that, aquifer modeling has better estimation from water system situation in the case study and the proposed methodologies can determine solution that can provide the most possible compromise among different stakeholders.

Keywords


1)       گزارش وضعیت حقابه‌بری، (1391). شرکت سهامی آب منطقه‌ای استان فارس.
2)       طاهری تیزرو، ع و کمالی، م (1395)، " مدلسازی آبخوان دشت تویسرکانبا مدل MODFLOW و ارزیابی وضعیت هیدروژئولوژیکی تحت شرایط موجود و آینده ". مجله منابع آب مرودشت. سال نهم.
3)       مجرد، م (1391). "بررسی ناحیه حفاظت از سر چاه برای یک مجموعه چاه از آبخوان دشت بیضا و زرقان" پایان­نامه کارشناسی ارشد، دانشگاه شیراز.
4)       مهندسین مشاور آب­نیرو، (1390)، بازنگری گزارش برنامه ریزی منابع آب و عملکرد سد رودبال براساس احجام آب تخصیص یافته در بخشهای مختلف مصرف. وزارت نیرو.
5)       Bazargan-Lari, M.R., Kerachian R., and Mansoori A., 2009. A conflict-resolution model for The conjunctive use of surface and groundwater resources that considers water-quality issues: A case study. Environmental Management, 43: 470–482.
6)       Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., 2002. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. KANGAL Rep. No. 200001, Indian Institute of Technology, Kanpur, India.
7)       Elhassan A.M., Goto A. and Mizutani M., 2003. Effect of conjunctive use of water for paddy field irrigation on groundwater budget in an alluvial fan. International Commission of Agricultural Engineering, the CIGR journal of scientific research and development, 5.
8)       Gao S,  Zhu, Y and  Yan ,K 2018. Simulation and prediction of groundwater pollution based on modflow model in a certain landfill. Earth and Environmental Science 189(2).
9)       Karamouz M., Kerachian R. and Zahraie B., 2004. Monthly water resources and irrigation planning: A case study of conjunctive use of surface and groundwater resources. ASCE, Journal of Irrigation and Drainage, 130(5): 391-402.
10)   Karamouz M., Tabari M.M. and Kerachian R., 2007. Application of artificial neural networks and generic algorithms in conjunctive use of surface and groundwater resources. Water International, IWRA 32(1): 163-176.
11)   Karimi A. and Ardakanian R., 2011. Development of a long-term water allocation model for agriculture and industry demands. Water Resources Management, Springer 24: 1717-1746.
12)   Maddock T., 1974. The operation of a stream-aquifer system under stochastic demands. Journal of Water Resources Research 10(1): 1-10.
13)   McKee, T. B., N. J. Doesken, and J. Kleist, 1993. The relationship of drought frequency and duration of time scales. Eighth conference on applied climatology. American Meteorological Society, Jan17-23, 1993, Anaheim CA, 179-186
14)   Rafipour-Langeroudi M. Kerachian M., Bazargan-Lari M.R., 2014. Developing operating rules for conjunctive use of surface and groundwater considering the water quality issues. Journal of Civil Engineering, 18(2): 454-461.
15)   15) Romero C, 2001. Extended lexicographic goal programming: a unifying approach. Omega (29): 63–71.
16)   Saadatpour M., Afshar A., Edinger JE., 2017. Meta-model assisted 2D hydrodynamic and thermal simulation model (CE-QUAL-W2) in deriving optimal reservoir operational strategy in selective withdrawal scheme. Water Resource Management 31(9): 2729–2744.
17)   Safavi, H.R., Darzi, F. and Marino, M.A., 2010. Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resource Management 24: 1968-1988.
18)   Sheikhmohammady M. and Madani K., 2008. Bargaining over the Caspian sea-the largest lake on the earth, world environmental and water resources congress. ASCE, Honolulu, HI.
19)   Shukla, S. and Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters 35(2).
20)   Singh D.K., 2002. Conjunctive use of surface and groundwater. Water technology center, Indian agricultural research institute, New Dehli-110012.