حقی زاده، ع؛ محمدلو، م؛ نوری، ف. 1394 . شبیه
سازی فرایند بارش رواناب با استفاده از شبکۀ عصبی
مصنوعی و سیستم فازی عصبی تطبیقی و رگرسیون
چندمتغیره(مطالعه موردی: حوضۀ آبخیز خرم آباد).
.233-243 : اکوهیدرولوژی 2
. 2) قربان زاده، م؛ ملای نیا، م.ر؛ قره سوفلو، ج. 1394
ارزیابی شبکه عصبی مصنوعی در برآورد بارش رواناب
(مطالعه موردی رودخانه کرج). کنفرانس ملی مهندسی
معماری. عمران و توسعه شهری. 10 صفحه.
3) لیبرمن ،ج و باوکر، آ.ه. 1388 .آمار مهندسی. مرکز
نشر دانشگاهی. 608 صفحه.
4) نورانی، و؛ و صالحی، ک. 1387 . مدل سازی بارش-
رواناب با استفاده از روش شبکه عصبی فازی تطبیقی و
مقایسه آن با روش های شبکه عصبی و استنتاج فازی.
چهارمین کنگره ملی مهندسی عمران . دانشگاه تهران. 8
صفحه.
5) نورا نی، و؛کی نژاد، م.ع؛ ملکا نی، ل. 1388 . استفاده
از سیستم فازی - عصبی تطبیقی در مدل سازی بارش -
رواناب. نشریه مهندسی عمران و محیط زیست دانشگاه
6 صفحه. . تبریز.شماره 4
6) Abrahart, R.J., F. Anctil, P. Coulibaly, C.W.
Dawson, N.J. Mount, L.M. See, A.Y. Shamseldin,
D.P. Solomatine, E. Toth, and R.L. Wilby.2012.
Two decades of anarchy? Emerging themes and
outstanding challenges for neural network river
forecasting. Progress in Physical Geography 36:
480-513.
7) An, G. 1996. The effect of adding noise during
back propagation training on a generalization
performance. Neural Computation 8: 643–674.
8) Antar, M.A., I. Elassiouti and M.N. Alam.
2006. Rainfall–runoff modeling using artificial
neural networks technique: a Blue Nile catchment
case study. Hydrological Process 20 (5): 1201–
1216.
9) Aqil, M., I. Kita, A. Yano, and S. Nishiyama.
2007. A comparative study of artificial neural
networks and neuro-fuzzy in continuous modeling
of the daily and hourly behaviour of runoff. Journal
of Hydrology 337:22–34.
10) ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology. 2000.
Artificial Neural Networks in hydrology ΙΙ:
Hydrologic Applications. Journal of Hydrologic
Engineering. 386:27-37.
11) Box, G.E.P., and G. Jenkins. 1976. Time
Series Analysis: Forecasting and control, seconded.
Holden-Day, San Francisco.
12) Donoho, D.H.1995.De-noising by softthresholding.
IEEE Transactions on Information
Theory 41(3):613-617.
13) Elshorbagy, A., S.P. Simonovic, and U.S.
Panu. 2002. Noise reduction in chaotic hydrologic
time series: facts and doubts. Journal of Hydrolog
256:147-165.
14) Firat, M., and M. Gungor. 2006. River flow
estimation using Adaptive Neuro Fuzzy Inference
System. Mathematics and Computers in Simulation
11:52-62.
15) Nejad, F., and V. Nourani.2012. Elevation of
wavelet denoising performance via an ANNBased
streamflow forecasting model. International
Journal of Computer Science and Management
Research 1:764-770.
16) Nourani, V., O. Kisi and M. Komasi. 2011.
Two hybrid artificial intelligence approaches for
modeling rainfall-runoff process. Journal of
Hydrology 402:41-59.
17) Rajurkar, M.P., U.C. Kothyari, and U.C.
Chaube.2002.Artificial neural networks for daily
rainfall-runoff modeling. Hydrological Sciences
Journal 47(6): 865-877.
18) Reed, R., R.J. Marks II, and S.Oh.1995
.Similarities of error regularization, sigmoid gain
scaling, target smoothing, and training with jitter.
94 بهبود عملکرد نرم افزارهای هوش مصنوعی در شبیه سازی بارش- رواناب با استفاده از روش حذف - تزریق نوفه
IEEE Transaction on Neural Networks 6 (3): 529–
538.
19) Salas, J.D., J.W. Delleur, V. Yevjevich, and
W.L. Lane. 1980. Applied modeling of
hydrological time series. Water Resources
Publications. Denever.
20) Sang, Y.F. 2012. A practical guide to discrete
wavelet decomposition of hydrologic time series.
Water Resources Management 26: 3345-3365.
21) Zhang, G.P. 2007.A neural network ensemble
method with jittered training data for time series
forecasting. Information Sciences 177:5329–5346