برآورد عملکرد پتانسیل و خلاء عملکرد محصولات عمده زراعی در ترکیب کشت شبکه آبیاری قزوین

نوع مقاله : مقاله پژوهشی

نویسنده

بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین، سازمان تحقیقات، آموزش و ترویج کشاورزی، قزوین، ایران.

چکیده

مقدمه: با توجه به محدودیت منابع آب، افزایش بهره­وری آب برای دستیابی به امنیت آبی و امنیت غذایی اهمیت بالایی دارد. یکی از اقدامات اساسی در این حوزه، تعیین تفاوت عملکرد محصولات، بین وضع موجود و وضعیت مطلوب (پتانسیل) است.
روش­: عملکرد پتانسیل محصول زراعی از پارامترهایی است که با محاسبه آن می­توان خلاء عملکرد را بدست آورد و بر اساس عوامل تأثیرگذار در تولید، به مدیریت منابع آب و خاک پرداخت. در این پژوهش عملکرد پتانسیل محصولات عمده زراعی در ترکیب کشت شبکه آبیاری دشت قزوین به روش بوم­شناسی زراعی تعیین شده است.
یافته­ها: نتایج پژوهش نشان داد خلاء عملکرد در ترکیب کشت محصولات عمده زراعی دشت قزوین، 3339 (کیلوگرم در هکتار)  بوده است. همچنین میانگین خلاء عملکرد با توجه به ترکیب کشت، خلاء عملکرد هر محصول و سطح تحت کشت محصولات در شبکه آبیاری دشت قزوین، 23/26 درصد بوده است. نتایج برآورد عملکرد پتانسیل در سطح شبکه آبیاری دشت قزوین نشان دهنده آن است که همه محصولات به سطح عملکرد قابل حصول (75 تا 85 درصد عملکرد پتانسیل) نرسیده و در محصولاتی مانند چغندر قند، گوجه­فرنگی و یونجه خلاء عملکرد زیادی وجود داشته است. همچنین یافته­های تحقیق نشان داد خلاء عملکرد محصول استراتژیک گندم در سطح شبکه آبیاری دشت قزوین به میزان 1502 کیلوگرم بر هکتار (25 درصد) بوده است.
نتیجه­گیری: یکی از مهمترین دستاوردهای محاسبه عملکرد پتانسیل، به دست آوردن اختلاف عملکرد در محصولات مختلف در منطقه می­باشد. با استفاده از چنین داده­هایی می­توان مدیریت کشاورزی محصولات مختلف در یک منطقه را ارزیابی نموده و در نهایت اولویت کشت هر محصول را تبیین کرد. کمی­سازی ظرفیت تولید هر هکتار از مزارع برای تصمیم­گیری، پژوهش­ها، توسعه و سرمایه­گذاری و برای کمک به کشاورزان محلی در تصمیم گیری­های مزرعه­ای مورد نیاز است. در این راستا آنالیز خلاء عملکرد، تخمین کمی از امکان افزایش در ظرفیت تولید برای یک ناحیه مشخص را فراهم می­آورد در چنین شرایطی شاید بهتر باشد به‌عنوان گام نخست، شکاف میان عملکرد واقعی در یک منطقه با عملکرد سهل‌الوصول (عملکردی که کشاورزان پیشرو منطقه به آن دست یافته‌اند) کاهش یابد. توفیق در این زمینه علاوه بر بهبود عملکردهای هر منطقه، مطمئناً تأثیر به سزایی در زمینه اقتصاد تولید و صرفه­جویی آب به همراه خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Potential Yield and Yield Gap of major crops in Qazvin irrigation network

نویسنده [English]

  • afshin uossef gomrokchi
Agricultural Engineering Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran.
چکیده [English]

Due to limited water resources, increasing water productivity is very important to achieve water security and food security. One of the basic measures in this area is to determine the difference in product performance between the current situation and the potential situation. Crop potential yield is one of the parameters that can be used to calculate the yield gap and to manage water and soil resources based on the factors affecting production. In this study, the potential yield of major crops in the composition of irrigation network of Qazvin plain has been determined by agronomic method. The results showed that the yield gap in the crop composition of major crops in Qazvin plain was 3339 (kg / ha). Also, the average yield gap due to the composition of cultivation, yield gap of each crop and the area under cultivation of crops in the irrigation network of Qazvin plain, was 26.23%. The results of estimating the potential yield at the level of the irrigation network of Qazvin plain show that not all crops have reached the achievable yield level (75 to 85% of the potential yield) and there has been a high yield in crops such as sugar beet, tomato and alfalfa. Given that in the current situation of operation of the irrigation network, it is very difficult to achieve potential performance, in such cases, the gap between actual performance and achievable performance should be reduced.

کلیدواژه‌ها [English]

  • Actual yield
  • Agronomic
  • Qazvin
  • Yield gap

1.       Ahmadi Alipour, H., Soltani, A., Kazemi, H., and Nehbandani, A. 2018. Zoning Golestan Province in terms of the ability and the wheat production gap using a simulation model (SSM). Crops Improvement, 20 (1): 129-144. [In Persian].

2.       Bayat, F,. Jahansuz, M. R., Hosseini, M. B., Sarmadian, F., Peykani Machiani, G., and Oveisi, M. 2020. Estimating the potential yield of forage maize and tomato crops under radiation-thermal condition of “Abhar” region, Iran. Journal of Agricultural Meteorology, 8 (2): 14-25. [In Persian].

3.       Bhatia, V. S., Singh, P., Wani, S. P., Chauhan, G. S., Rao, A. V. R., Mishra, A. K., and Srinivas, K. 2008. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agricultural and Forest Meteorology Journal, 148: 1252-1265.

4.       Cassman, K.G., Dobermann, A., Walters, D.T., and Yang, H.S. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Ann. Rev. Environ. Resour. 28:315-358.

5.       Chimeh, T., Ebrahimi, K., Horfer, A.H., and Iraqinejad, Sh. 2014. Evaluation of economic value of agricultural water with pricing approach based on product type in Qazvin plain.  Water Research in Agriculture, 28(1):171-181. [In Persian].

6.       Dadrasi, A., Torabi, B., Rahimi, A., Soltani, A., and Zeinali, E. 2021. Determination of Potato (Solanum tuberosum L.) yield gap in Golestan Province. Journal of Agroecology, 12(4):613-633.

7.       De Wit, C.T. 1968. Plant production. In: miscellaneous Papers Landbouw Hoge School, Wageningen No. 3: 25-50.

8.       De Wit, C.T., Goudrrian, J., Van Laar, H.H., Penning de Vries, F.W.T., Rabbinge, R., Van Keulen, H., Louwerse, W., Sibma, L. and De Jonge, C. 1978. Simulation of Assimilation, Respiration and Transpiration of Crops, Wageningen, Netherlands: PUDOC, 140 pp.

9.       Doorenbos, J., and Kassam, A.H. 1979. Yield response to water. Irrigation and Drainage Paper n. 33.  FAO, Rome, Italy, 193 pp.

10.   Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., and Sheffield, J. 2015. The global gridded crop model inter comparison: data and modeling protocols for phase 1. Geosci. Model Dev. 8 (2): 261–277.

11.   Hajjarpou, A., Soltani, A., Zeinali, E., Kashiri, H., and Aynehband, A. 2017. Evaluation of wheat (Triticum aestivum L.) yield gap in Golestan province of Iran using comparative performance analysis (CPA) method.  Iranian Journal of Crop Sciences. 19(2): 86-101. (In Persian).

12.   Hoseini, M., Mazandaranizadeh, H., and Nazari, B. 2021. Simultaneously Management of Surface and Groundwater Resources and Increasing Farmers' Resilience to Water Scarcity by Predicting the Price of Agricultural Products and using GA (Case Study of Irrigation and Drainage Network of Qazvin Plain). Iranian Journal of Soil and Water Research, 52 (2): 563-576. [In Persian].

13.   Izadfard, A., Sarmadian, F., Jahansooz, M.R., Peikani, G., and Chaichi, M.R.  2017. Comparison between AquaCrop and radiation-thermal production potential models for potential yield estimation in part of Moghan plain, Ardabil Province, Iran. Iranian Journal of Soil and Water Research, 48 (4): 853-864. [In Persian].

14.   Jalali, A.H., and Salemi, H.R. 2017. Increasing Water Productivity by Decreasing the Discrepancy between Average Potato Yield in the Region and Its Performance in Pioneer Farms (A Case study of Fereidan Region, Isfahan). Journal of Land Management, 5(1):31-41. [In Persian].

15.   Jenab, M., and Nazari, B. 2018. Estimating Of Wheat Yield and Water Productivity Gap Using GYGA Protocol in Qazvin Province. Journal of Water Research in Agriculture, 32 (1): 41-55. [In Persian].

16.   Kassam, A.H. 1977.  Net biomass production and yield of crops. Present and potential land use by agro-ecological zones project. Rome, FAO.

17.   Koocheki, A., and Nassiri Mahallati, M. 2019. Yield Monitoring for Wheat and Sugar beet in Khorasan Province: 2- Estimation of Yield Gap. Iranian Journal of Field Crops Research, 17 (1): 15-38. [ In Persian].

18.   Koocheki, A., Nassiri Mahallati, M., Mansoori, H., and Moradi, R. 2017. Effect of Climate and Management Factors on Potential and Gap of Wheat Yield in Iran with Using WOFOST Model. Iranian Journal of Field Crops Research, 15(2): 244-256. [In Persian].

19.   Liua, W., Yanga, H., Folberth, C., Wange, X., Luof, Q., and Schuling, R. 2016. Global investigation of impacts of PET methods on simulating crop-water relations for maize. Agricultural and Forest Meteorology. 221:164–175.

20.   Lobell, D.B., Cassman, K.G., and Field, C.B. 2009. Crop yield gaps: their importance magnitudes and causes. Ann. Rev. Environ. Resour. 34:179-204.

21.   Meghdadi, N., Soltani, A., Kamkar, B., and Hajarpoor, A. 2014. Agroecological zoning of Zanjan province for estimating yield potential and yield gap in dryland-base chickpea production systems. Journal of Plant Production Research, 21 (3): 27-49. [In Persian].

22.   Mirhashemi, S.H., Haghighat Jou, P., Mirzaei, F., and Panahi, M. 2018. The mining association rules for water table fluctuations analysis of Ghazvin city by Apriori algorithm. Journal of Irrigation and Water Engineering, 8(31): 140-151. [In Persian].

23.   Nassiri Mahallati, M., Koocheki, A. 2009. Agroecological zoning of wheat in Khorasan provinces:  Estimating yield potential and yield gap. Iranian Journal of Field Crops Research, 7 (2): 695-709. [In persian]. 

24.   Nekahi, M.Z., Soltani, A., Siahmarguee, A., and Bagheran, N. 2014. Yield gap of crop and weed management in wheat: case study, Golestan province-Bandar Gaz. Journal of Crop Production, 7(2): 135-156. [In Persian].

25.   Rao, N.H., Sarma, P., and Chander, S. 1988. A simple dated water production function for use in irrigated agriculture. Agric. Water Manage. 13:25-32.

26.   Seid Jalali., A., Sarmadian, F., Shorafa, M. 2012. Modeling of land production potential for irrigated winter wheat in Aghili region Khuzestan Province. Iranian Journal of Soil Research, 27 (4): 427-439. [In Persian].

27.   Senthilkumar, K, Rodenburg, J., and Dieng, I. 2020. Quantifying rice yield gaps and their causes in Eastern and Southern Africa. Agro Crop Sci. 206: 478– 490.

28.   Servati, M., Jafarzadeh, A., Ghorbani, M.A., Shahbazi, F., and Davatgar, N. 2013. Comparison of the FAO and Albero Models in Prediction of Irrigated Wheat Production Potentials in the Khajeh region. Water and Soil Science, 24 (3): 1-14. [In Persian].

29.   Soltani, A., Hajjarpoor, A., and Vadez, V .2016. Analysis of chickpea yield gap and waterlimited potential yield in Iran. Field Crops Research. 185: 21-30.

30.   Sys, C., Van Ranset, E., Debaveye, J., and Beernaert F. 1993. Land Evaluation: Crop Requirements. International Training Center for Post Graduate Soil Scientists, Ghent University, Ghent.

31.   Sys, C., Van Ranst, E., and Debaveye, J. 1991. Land evaluation. Part I, principles in land evaluation and crop production calculation. International Training Center for Post Graduate Soil Scientists, Ghent University, Ghent. 274 p.

32.   Taati, A., Sarmadian, F., Mousavi, A., and Rahmani, A. 2015. Agro-ecological zoning for cultivation of Alfalfa (Medicago sativa L.) using RS and GIS. Scientia Agriculturae. 9 (2): 93-100.

33.   Uossef Gomrokchi, A. 2014. Investigation of water-production index in Qazvin irrigation network. Final report of the Institute of Technical Research and Agricultural Engineering.   [In Persian].

34.   Van Bussel, L.G., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., Saito, K., Cassman, K.G., and van Ittersum, M.K. 2015. From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Research. 177: 98-108.

35.   Van Ittersum, M.K., and Donatelli, M. 2003. Cropping system models: science, software and applications. Special issue Eur. J. Agron. 18:187–203.

36.   Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., and Hochman, Z. 2013. Yield gap analysis with local to global relevance- A Review. Field Crop Res. 143:4-17.

37.   Van Wart, J., van Bussel, L.G.J., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N.D., Claessens, L., van Ittersum, M.K., and Cassman, K.G. 2013. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res. 143: 44-55.

38.   Varvani, H., Ganji khoramdel, N., Mardian, M., and bansooleh, B. 2016.  Application of regionalism method based on cropped ecology for determining yield gap of irrigated wheat in the climate groups of Iran. Iranian Water Researches Journal, 10(3): 11-20. [In Persian].

39.   Zahed, M., Soltani, A., Zeinali, E., Torabi, B., Zand, E., and Alimagham, S. 2020.  Modeling of irrigated wheat yield potential and gap in Iran. Journal of Crop Production, 12 (3): 35-52. [ In Persian].

40.   Zhang, Z., Cong, R., Ren, T., Li, H., Zhu, Y., Lu, J. 2020. Optimizing agronomic practices for closing rapeseed yield gaps under intensive cropping systems in China. Journal of Integrative Agriculture. Volume 19 (5): 1241-1249.