نویسندگان
1 مسعود غریب دوست ، کارشناس ارشد مهندسی منابع آب ، گروه مهندسی آب ، دانشکده کشاورزی ، دانشگاه تبریز
2 محمد علی قربانی، دانشیار گروه مهندسی آب ، دانشکده کشاورزی ، دانشگاه تبریز،
3 ایمان فروزنده شهرکی ، کارشناس ارشد مهندسی منابع آب ، گروه مهندسی آب ، دانشکده کشاورزی ، دانشگاه تبریز
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
The impact of global warming on climate change due to an increase in the greenhouse gases in the atmosphere has been proven in many natural systems. All of the general circulation models (GCM)of the atmosphere predict a warmer future for the planet Earth. Hydrological processes such as rainfall and river flows as main sources of water supply will be affected under such circumstances. Due to the low spatial resolution or simplification of some micro-scale phenomena in atmospheric GCMs, they cannot be employed for an accurate approximation of the climate of a certain area; therefore, their output must be downscaledto the specifiedmeteorological station’s domain. Therefore, the data generated by the Had CM3-GCM were downscaled applying theLARS-WG model under two scenarios A2 and A1B, and the parametersof daily rainfall, and theminimum and maximum temperature of the Sufi-Chi basin generated for three periods (2011-203, 2046-2065-, 2080-2099). The artificial neural networks and genetic programming of intelligent model were used to assess the climate change’s effects on runoff generation of the Sufi-chai Basin.The results indicate that rainfall will increase in the 2011-2030 period and will decrease thereafter. Furthermore, the maximum and minimum temperatures will generallyincrease in the three mentionedperiods; however, the runoff volumewill decrease in the future relative to the presenttime.
کلیدواژهها [English]