نشت یابی شبکه‌های توزیع آب با استفاده از مدل تلفیقی کلونی مورچه ها (ACO) و حذف مرحله ای (SSEM)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه عمران آب، دانشکده مهندسی ، دانشگاه بیرجند، بیرجند، ایران

2 دانشجو کارشناسی ارشد رشته عمران، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

چکیده
مقدمه: روش های رایج نشت یابی بسیار هزینه بر و وقت گیر می باشند. لذا اخیراً روش‌هایی که با مدل­سازی شبکه به صورت فراگیر نشت را جستجو می‌کنند، مورد توجه قرار گرفته اند.
روش­: در این روش ها با کالیبراسیون شبکه و تنظیم مصارف در گره ها، اختلاف بین مقادیر فشار و دبی اندازه گیری شده و بدست آمده از مدل به عنوان تابع برازندگی کمینه می شود. در تحلیل ­ها ثابت شد که تابع برازندگی به تنهایی نمی تواند راهنمای خوبی برای رسیدن به نقطه کمینه باشد. برای رفع این مشکل روش ACO  استفاده شد. این روش علاوه بر برازندگی از پارامتری به نام مطلوبیت  نیز استفاده می کند که قابلیت های روش را افزایش می دهد.
یافته ­ها: در این تحقیق سه روش بهینه یابی بر پایه ACO مورد مقایسه قرار گرفتند. روش نخست ACO با مطلوبیت ثابت است که قبلاً در مراجع معرفی شده است. در روش دوم مقدار تابع مطلوبیت بر اساس مقادیر فشارهای مشاهداتی و میزان افت فشار نسبت به حالت بدون نشت، متغیر است. آخرین روش با تلفیق دو مدل SSEM و ACO مورد بررسی و مقایسه قرار گرفت. این روش ها بر روی شبکه ای برگرفته از مراجع و همچنین شبکه بیرجند مورد بررسی قرار گرفت.
نتیجه­ گیری: نتایج نشان می دهند که روش های پیشنهادی این مقاله در زمان و تعداد تکرار کمتر به نتایج  دقیق تری دست یافته اند.
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Leakage detection of water distribution networks using integrated model of ant colony optimization (ACO) and step by step elimination method (SSEM)

نویسندگان [English]

  • Ali Nasirian 1
  • Masoud Sabet 2
1 Assistant Prof. of Civil Eng., Civil department, engineering faculty, University of Birjand, Birjand, Iran
2 MSc Student of civil Eng., Civil department, engineering faculty, University of Birjand, Birjand, Iran
چکیده [English]

Abstract
Introduction: Conventional leak detection methods are costly and time-consuming, so attention has recently been drawn to methods that detect leakage by network modeling comprehensively.
Methods: In these methods, the difference between the measured pressure and flow rate and those obtained by the model is minimized as a fitness function by calibrating the network and adjusting the nodal demands. It has been established by analysis that the fitness function in itself cannot be a good guide to achieving the minimum point. This drawback was solved by using the ACO method. In addition to the fitness, this method employs a parameter called heuristic guidance to improve its capabilities.
Results: This research compared three ACO-based optimization methods. The first was ACO with fixed heuristic guidance already introduced in the literature. In the second method, the heuristic guidance varies by the values of the observed pressures and pressure decline versus the no-leak state. The third is studied and compared by integrating SSEM and ACO models. These methods were investigated on a network derived from the literature and the Birjand network.
Conclusion: The results revealed that the methods proposed here achieved more precise results in a shorter time and with fewer iterations.

کلیدواژه‌ها [English]

  • Calibration
  • optimization
  • water distribution network
  • leak detection
  • ACO
  1. Karamouz, M., Tabesh, M., Nazif, S., and Moridi, A. (2005). “Estimation of hydraulic pressure in water networks using artificial neural networks and fuzzy logic.” Journal of Water & Wastewater, 53: 3-14.
  2. Covas, D. and Ramos, H. (2010). “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Resour. Plan. Manage., 136(2): 248-257.
  3. Asl, M. S. and Maghrebi, M. F. (2008). “Intelligent pressure management to reduce leakage in urban water supply networks, a case study of sarafrazan district, mashhad.” Journal of Water & Wastewater, 3:  99-104.
  4. .Hunaidi, O., Chu, W., Wang, A., and Guan, W. (1999). “Leakage detection methods for plastic water distribution pipes.” in Advancing the Science of Water. Denver: AWWA Research Foundation Technology Transfer Conf.
  5. Brunone, B. (1999). “Transient test-based technique for leak detection in outfall pipes.” J. Water Resour. Plan. Manage., 125(5):  302–306.
  6. Covas, D., Ramos, H., Young, A., Graham, N., and Maksimovic, C. (2005). “Uncertainties of leak detection by means of hydraulic transients: from the lab to the field.” in 8th Conf. on Computing and Control for the Water Industry (CCWI 2005). Univ. of Exeter, Exeter, UK.
  7. Abhulimen, K. E. and Susu, A. A. (2004). “Liquid pipeline leak detection system: model development and numerical simulation.” Chem Eng J., 96:  207–222.
  8. Cheng, W. and He, Z. (2011). “Calibration of nodal demand in water distribution systems.” Journal of Water Resources Planning and Management, 137(1):  31-40.
  9. Andersen, J. H. and Powell, R. S. (2000). “Implicit state-estimation technique for water network monitoring.” Urban Water 2(1): 23–30.
  10. Zorriasateyn, N. and Borghei, S. M. (2005). “Dynamic simulation of water networks to control and reduce Physical Unaccounted-for Water.” Journal  of Water & Wastewater, 55:  49-59.
  11. Pudar, R. S. and Ligget, J. A. (1992). “Leaks in pipe networks.” Journal of Hydraulic Engineering 118(7): 1031-1046.
  12. Sage, P. (2004). “Developments in use of network models for leakage management at united utilities north west.” in CIWEM North West and North Wales Branch Water Treatment and Distribution Conference. Warrington, UK, Nov 2005.
  13. Wu, Z. Y. and Sage, P. (2006). “Water loss detection via genetic algorithm optimization-based model calibration.” ASCE 8th Annual Int. Symp. on Water Distribution Systems Analysis: Cincinnati, Ohio.
  14. Fazel, B. and Maghrebi, M. F. (2009). “Detecting leaks in urban water supply networks with field measurements of pressure node (case study Golbahar city ).” 8th Iranian Hydraulic Conference: Tehran University.
  15. Boulos, P. F. and Wood, D. J. (1990). “Explicit calculation of pipe network parameters.” Journal of Hydraulic Engineering, 116(11): 1329-1344.
  16. Kang, D. and Lansey, K. (2011). “Demand and roughness estimation in water distribution systems.” J. Water Resour. Plan. Manage., ASCE, 137(1):  20-30.
  17. Giustolisi, O., Savic, D., and Kapelan, Z. (2008). “Pressure-driven demand and leakage simulation for water distribution networks.” J. Hydraulic Eng., ASCE, 134(5):  626-635.
  18. Wu, Z. Y., Sage, P., and Turtle, D. (2010). “Pressure-dependent leak detection model and its application to a district water system.” J. Water Resour. Plan. Manage., 136(1):  116-128.
  19. Koppel, T. and Vassiljev, A. (2009). “Calibration of a model of an operational water distribution system containing pipes of different Age.” Advances in Engineering Software, Published by Elsevier Ltd., 40:  659-664.
  20. Walski, T. M., Chase, D. V., Savic, D. A., Grayman, W., and Beckwith, S. (2002). “Advanced water distribution modeling and management.” Waterbury, CT USA: Haested Press.
  21. Savic, D. A. and Walters, G. A. (1995). “Genetic algorithm techniques for calibrating network models.” Centre for Systems and Control Engineering Univ. of Exeter, Exeter, U.K.
  22. Wu, Z. Y., Walski, T. M., Mankowski, R., Herrin, G., Gurrieri, R., and Tryby, M. (2002). “Calibrating water distribution model via genetic algorithms.” AWWA IM Tech Conference: Kansas City, Missouri, USA.
  23. Vitkovsky, J. P., Simpson, T. R., and Barkdoll, B. D. (2000). “Leak detection and calibration using transients and genetic algorithms.” J. Water Resour. Plan. Manage., ASCE, 126(4): 262-265.
  24. Nasirian, A. and Maghrebi, M. F. (2013). “Leakage detection in water distribution network based on a new heuristic genetic algorithm model.” Journal of Water Resource and Protection, Accepted.
  25. Maghrebi, M. F., Hasanzadeh, Y., and Yazdani, S. (2011). “Calibration of water supply systems based on ant colony optimization.” Journal of Water & Wastewater, 4.
  26. Dorigo, M. (1992). “Optimization, learning and natural algorithms.” Politecnico di Milano: Milan, Italy.
  27. Dorigo, M., Vaniezzo, M., and Colorni, A. (1996). “Ant system: optimization by a colony of cooperating agents.” IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 26(1): 29-41.
  28. Zecchin, A. C., Simpson, A. R., Maier, H. R., Leonard, M., and Nixon, J. B. (2007). “Ant colony optimization applied to water distribution system design: comparative study of five algorithms.” J. Water Resour. Plan. Manage.133(1): 87-92.
  29. Walski, T. M., Brill, E. D., Gessler, J., Goulter, I. C., Jeppson, R. M., Lansey, K., Lee, H. L., Liebman, J. C., Mays, L., Morgan, D. R., and Ormsbee, L. (1987). “Battle of networks models: epilogue.” J. Water Resour. Plan. Manage., 113(2): 191-203.
  30. .Behzadian, K., Kapelan, Z., Savic, D., and Ardeshir, A. (2009). “Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks.” Environmental Modelling & Software, 24: 530–541.
  31. Kapelan, Z. S., Savic, D. A., and Walters, G. A. (2003). “Multiobjective sampling design for water distribution model calibration.” J. Water Resour. Plan. Manage., ASCE 129(6): 466-479.
  32. Kapelan, Z. S., Savic, D. A., and Walters, G. A. (2005). “Optimal sampling design methodologies for water distribution model calibration.” Journal of Hydraulic Engineering ASCE, 131(3): 190-200.
  33. Nasirian, A. and Maghrebi, M. F. (2013). “Application of optimization methods for calibration and leak detection in water distribution system using a labratorial model.” Journal of Water & Wastewater:  Accepted Article
  34. Giustolisi, O. and Berardi, L. (2011). “Water distribution network calibration using enhanced GGA and topological ” Journal of Hydroinformatics, 13(4): 621-641.
  35. Wu, Z. Y., Burrows, R., Moorcroft, J., Croxton, N., and Limanond, S. (2010). “Pressure-dependent leakage detection method compared with conventional techniques.” Water Distribution System Analysis: Tucson, AZ, USA. 1083-1092.
  36. Sabet, M., Nasirian, A. and Mohtasham, M. (2016). "Effects of ant colony method for leak detection in water distribution networks (Case study: Birjand network)." First International Conference on Water, Environment and Sustainable Development. University Mohaghegh Ardabil. (In Persian).