طراحی بهینه شکل سدهای قوسی با استفاده از الگوریتم بهینه‌سازی ازدحام ذرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران ، واحد لارستان، دانشگاه آزاد اسلامی، لار، ایران

2 گروه مهندسی عمران ، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

چکیده

مقدمه: با توجه به اثرات احداث سدها در حوضه­ های پایین دست، لزوم بررسی وضعیت و اثرات آن ها یکی از مسائل مهم می­ باشد. در این مطالعه شکل بهینه سدهای دو قوسی بتنی با در نظر گرفتن اندرکنش ­های مختلف در برابر زلزله مورد بررسی قرار گرفت.
روش شناسی: حجم بتن مصرفی به عنوان تابع هدف مسأله بهینه ­سازی در نظر گرفته شده و متغیرهای طراحی پارامترهای هندسی سد بودند. تعداد 20 پارامتر هندسی مورد بررسی قرار گرفت. ابتدا سیستم سد-آب-پی با استفاده از روش اجزاء محدود شبیه ­سازی شد. سپس بهینه­ سازی با استفاده از الگوریتم بهینه سازی ازدحام ذرات (PSO) صورت گرفت.
یافته­ ها: برای ارزیابی عملکرد روش استفاده شده برای بهینه ­سازی سدهای قوسی، سد موروپونت به عنوان یک سازه واقعی انتخاب و تحت شرایط مختلف در برابر زلزله السنترو بهینه ­سازی شد. پارامترهای محاسباتی الگوریتم بهینه سازی  PSO نشان از عملکرد مناسب این الگوریتم داشت.
نتایج: به منظور درنظر گرفتن ماهیت تصادفی الگوریتم بهینه­ سازی، چهار اجرای مستقل از هم برای روش PSO انجام شد و نتایج آن ها جداگانه مورد بررسی قرار گرفت. نتایج نشان داد با تعداد 10000 تحلیل حجم بتن مصرفی برابر 346000 مترمکعب بدست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Optimum Design of Arch Dam Shape Using Particle Swarm Optimization Algorithm

نویسندگان [English]

  • Seyed Reza Mosavi 1
  • Nader Barahmand 1
  • Akbar Ghanbari 1
  • Arash Totonchi 2
1 Department of Civil Engineering, Larestan Branch, Islamic Azad University, Lar, Iran
2 Department of Civil Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
چکیده [English]

Introduction: Considering the effects of building dams in downstream basins, the need to investigate their condition and effects is one of the important issues. In this study, the optimal form of concrete double-arched dams was investigated under various interactions against earthquakes.
Methods: The volume of concrete used was considered as the goal function of the optimization problem and the design variables were the geometric parameters of the dam. The twenty geometrical parameters were investigated. First, the dam-water-foundation system was simulated using the finite element method. Then the optimization was done using the particle swarm optimization (PSO).
Results: To check the performance of the method used to optimize arch dams, the Moropont dam was selected as a real structure and optimized under different conditions against the Centro earthquake. The calculation parameters of the PSO algorithm showed the proper performance of this algorithm.
Conclusion: To check the random nature of the optimization algorithm, four independent executions were performed for the PSO method and their results were analyzed separately. The results showed that with the number of 10,000 analyzes, the volume of concrete used was equal to 346,000 m3.

کلیدواژه‌ها [English]

  • Arched Dams
  • PSO algorithm
  • Moropoint dam
  • Optimal dam shape
  1. Yao TM, Choi KK. Shape optimal design of an arch dam. Journal of structural engineering. 1992;115(9):2401-5.
  2. Zhu B, Bin R, Jia J, Li Y. Shape Optimization of Arch Dams for Static and Dynamic Loads. International Water Power & Dam Construction. 1992;18(11):1310-30.
  3. Rezaei Pazhand M, Khaleghi K. Optimal geometry pattern of concrete arch dams. Journal of modeling in engineering (In Persian). 2010;8(20):1-15.
  4. Eslami R. Optimizing the shape of concrete double-arched dam with isogeometric analytical method.. Shahrood: Shahrood University of Technology (In Persian); 2013.
  5. 5Bakhtiarinejad A, Hassounizadeh H, Derikund A. Analysis of Bakhtiari double-walled concrete dam body by 3D finite element coding. Two Quarterly Journal of Water Engineering (In Persian). 2012;1(1):1-10.
  6. Pasbani-Khiavi M, Ghorbaniو A., Abuli A. Investigating the influence of earthquake torsional component on the seismic behavior of double arched concrete dams using finite element model. Iranian hydroelectric dam and power station magazine (In Persian). 2015;2(4):34-45.
  7. Asghari Niari I. Performance evaluation of arched concrete dam under the effect of blast loading. Ardabil, Iran (In Persian): Mohaghegh Ardabili University; 2019.
  8. Davodi M, Iqbali D. Determining the dynamic characteristics of Dez double-arched concrete dam using environmental vibration testing by three different signal processing methods. Earthquake Science and Engineering (In Persian). 2019;9(1):13-30.

Hamidian D, Seyedpoor, S.M. Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization. Applied mathematical modeling. 2010;34:1574-85.

  1. Kalani Sarokolayi L, Navayi Neya B, Vaseghi Amiri J. Nonlinear dynamic analysis of concrete gravity dams considering rotational component of ground motion. International journal of civil engineering. 2015;13(1):16-29.
  2. Pereira S, Magalhaes F, Gomes JP, Cunha A, Lemos JV. Vibration-based damage detection of a concrete arch dam. Engineering Structures. 2021;235(4):112032.
  3. Xiangyu C, Liang C, Jianyun C, Jing L, Wenyan L, Haixiang L, et al. Seismic damage identification of high arch dams based on an unsupervised deep learning approach. Soil Dynamics and Earthquake Engineering. 2023;168(107834).
  4. Li B, Liang W, Yang SH, Zhang L. Automatic identification of modal parameters for high arch dams based on SSI incorporating SSA and K-means algorithm. Applied Soft Computing. 2023;138(110201).
  5. Antoniou A, Lu WS. Practical optimization: algorithm and engineering practical. Secend, editor. New York: Springer; 2007.
  6. Zhang XF, Li SY, Chen YL. Optimization of geometric shape of Xiamen arch dam. Advances in engineering software. 2009;40(2):105–9.
  7. Seyedpoor SM, Salajegheh J, Salajegheh E, Golizadeh S. Optimum shape design of arch dams for earthquake loading using a fuzzy inference system and wavelet neural networks. Engineering Optimization. 2009;41(5):473-93.
  8. Varshney RS. Concrete Dams. ed. s, editor. New Delhi. : Oxford and IBH Publishing Co,; 1982.
  9. Gholizadeh S, Seyedpoor SM. Optimum design of arch dams for frequency limitations. International journal of optimization in civil engineering. 2011;1:1-14.
  10. Seyedpoor SM, Gholizadeh S. Optimum shape design of arch dams by a combination of simultaneous perturbation stochastic approximation and genetic algorithm methods. Advances in structural engineering. 2008;11(5):501-10.
  11. Abrishami J, Rajaei NV. Concrete arch dams: sesign and constraction. Mashhad, Iran. (In Persian): Astan Ghods Razavi Publications; 2001.
  12. McCulloch WS, Pitts W. A logic calculus of the ideas imminent in nervous activity. Bull Math Biophys. 1943;5:115-33.
  13. Rosenblatt F. Priciples of Neurodynamics: Perceptrons and the Theory of Brain Mechanicms. Arch Gen Psychiatry. 1962;7(3):218-9.
  14. Gallant SI. Neural Network Learning and Expert Systems: MIT Press Direct; 1993.

Smith M. Neural Networks for Statistical Modelling: Van Nostrand Reinhold; 1994.

  1. Singh KP, Basant A, Malik A, Jain G. Artificial neural network modeling of the river water quality-A case study. Ecological Modelling. 2009;220(6):888–95.
  2. Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report-TR06. 2005.
  3. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization. 2007;39:459-71.

Peer:. Pacific Earthquake Engineering Research Center 2009 .