آنتی بیوتیک‌ها، مسیرهای انتشار و روش‌های نوین حذف آنها از محیط‌های آبی

نوع مقاله : مقاله مروری

نویسندگان

1 دانش آموخته کارشناسی ارشد رشته علوم و مهندسی محیط زیست، گروه علوم و مهندسی محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

2 دانشیار گروه علوم و مهندسی محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

3 دانشیار گروه کشاورزی، دانشکده منابع طبیعی و محیط زیست، دانشگاه شهید باهنر کرمان، کرمان، ایران

4 دانش آموخته دکتری رشته محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، ایران

چکیده

مقدمه: در سال‌های اخیر مصرف آنتی‌بیوتیک ها به علت مصارف بهداشتی در ارتباط با سلامت انسان و دام به‌طور قابل توجهی در سراسر جهان افزایش یافته است. حضور این ترکیبات حتی در مقادیر بسیار کم نیز می تواند اثرات نامطلوبی بر محیط‎زیست و موجودات زنده داشته باشد. هدف از این مطالعه مروری بر فناوری‌های مختلف برای حذف آنتی بیوتیک‌ها از محیط‌های آبی با تاکید بر فن‌آوری های جدید می باشد.

مواد و روش ها: در این مطالعه مروری برای دستیابی به مطالب به‌روز و معتبر از مطالعات کتابخانه‌ای و مقالات موجود در پایگاه‌های اطلاعاتی Google Scholar، Science direct، Springer، Scopus، Elsevier و PubMed کمک گرفته شد

نتایج و بحث: نتایج نشان داد که سیستم‌های بیوراکتور غشایی در بین روش‌های بیولوژیکی علی‌رغم هزینه بالا به‌سبب استفاده از فیلتراسیون، پساب با کیفیت‌تری تولید می کنند و نسبت به سایر سیستم‌های تصفیه بیولوژیکی موثرتر هستند. همچنین بررسی روش‌های بیولوژیکی نشان داد که راندمان حذف آنتی‌بیوتیک‌ها از 40 تا 95 درصد متغیر بود. روش‌های اکسیداسیون پیشرفته در سال‌های اخیر گزینه مناسبی برای حذف آنتی‌بیوتیک‌ها هستند که قادر به حذف کامل آنتی‌بیوتیک‌ها می‌باشند، همچنین فناوری ارزان و دوستدار محیط زیست می‌باشند.

نتیجه گیری: در این بررسی، تعدادی از فناوری‌های تصفیه آلاینده‌های آنتی بیوتیکی و مزایا و معایب آنها مورد بررسی قرار گرفت و نشان داد که فناوری‌های بیولوژیکی و فیزیکو شیمیایی خصوصا فرآیندهای اکسیداسیون پیشرفته قادر به حذف آلاینده‌های دارویی می‌باشند. اگرچه کاتالیزورهای نوری با موفقیت برای تصفیه فاضلاب در مقیاس آزمایشگاهی توسعه یافته‌اند، اما نیازمند تحقیقات گسترده‌تری تا تجاری‌سازی از این فرآیندها صورت می‌باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Antibiotics, release routes, and their novel removal approaches from the aquatic environments

نویسندگان [English]

  • Fateme Kargar 1
  • Akram Bemani 2
  • Mohammad Hoseein Sayadi 3
  • Najmeh Ahmadpour 4
1 Former MSc Student of Environmental science and engineering Department, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran
2 Associate Prof. of Environmental science and engineering Department, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran
3 Associate Prof. of Agriculture Department, Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman
4 Ph.D. Environmental science Department, Faculty of Agriculture & Environment, Birjand University, Birjand, Iran
چکیده [English]

Abstract
Introduction: In recent years, the consumption of antibiotics has increased significantly all over the world due to health reasons related to human and animal health. The presence of these compounds even in very small amounts causes adverse effects on the environment and living organisms. The purpose of this study is to review different technologies for removing antibiotics from aquatic environments with an emphasis on new technologies.
Methods: In this study, a review of library studies and articles in the Google Scholar, Science Direct, Springer, Scopus, Elsevier, and PubMed databases are used to obtain up-to-date and valid content.
Findings: The results showed that membrane bioreactor systems among biological methods, despite the high cost due to the use of filtration, produce higher quality wastewater and are more effective than other biological treatment systems. Also, the investigation of biological methods showed that the efficiency of removing antibiotics varied from 40 to 95 percent. In recent years, advanced oxidation methods are a suitable option for removing antibiotics, which can completely remove antibiotics, and are also a cheap and environmentally friendly technology. In this study, several antibiotic pollutant purification technologies and their advantages and disadvantages were examined and it was shown that biological and physicochemical technologies, especially advanced oxidation processes, are capable of removing pollutants. They are medicinal. Although photo catalysts have been successfully developed for wastewater treatment on a laboratory scale, more extensive research is needed before the commercialization of these processes.

کلیدواژه‌ها [English]

  • Antibiotics
  • Emergent pollutants
  • Activated sludge: advanced oxidation
  • Water treatment
 

9-      Larsson DJ, de Pedro C, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of hazardous materials. 2007 Sep 30;148(3):751-5.

10-  Naseh, N, Barikbin, B, Taghavi, Lt, Naseri, M A. The destructive effects of antibiotic contamination on the environment and the effectiveness of various methods in removing them from contaminated effluents. Nurse and doctor in battle. 2016 Aug 10; 4 (10): 50-62.

11-  Hanna N, Sun P, Sun Q, Li X, Yang X, Ji X, Zou H, Ottoson J, Nilsson LE, Berglund B, Dyar OJ. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environment international. 2018 May 1;114:131-42.

12-  Yazdia M, Sayadib MH, Farsada F. Removal of penicillin in aqueous solution using Chlorella vulgaris and Spirulina platensis from hospital wastewater. Desalin. Water Treat.. 2018 Aug 1;123:315-20.

13-  Gago-Ferrero P, Gros M, Ahrens L, Wiberg K. Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides, and perfluoroalkyl substances in recipient waters. Science of the Total Environment. 2017 Dec 1;601:1289-97.

14-  Segura Y, Martínez F, Melero JA. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Applied Catalysis B: Environmental. 2013 Jun 5;136:64-9.

15-  Fazal S, Zhang B, Zhong Z, Gao L, Lu X. Membrane separation technology on pharmaceutical wastewater by using MBR (membrane bioreactor). Journal of Environmental Protection. 2015 Mar 31;6(04):299.

16-  Shi X, Lefebvre O, Ng KK, Ng HY. Sequential anaerobic– aerobic  treatment of pharmaceutical wastewater with high salinity. Bioresource technology. 2014 Feb 1;153:79-86.

17-  Daughton CG, Ruhoy IS. Lower-dose prescribing: minimizing “side effects” of pharmaceuticals on society and the environment. Science of the Total Environment. 2013 Jan 15;443:324-37.

18-  Castensson S, Eriksson V, Lindborg K, Wettermark B. A method to include the environmental hazard in drug prescribing. Pharmacy world & science. 2009 Feb;31(1):24-31.

19-  Yan C, Yang Y, Zhou J, Liu M, Nie M, Shi H, Gu L. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environmental Pollution. 2013 Apr 1;175:22-9.

20-  Qiang Z, Adams C, Surampalli R. Determination of ozonation rate constants for lincomycin and spectinomycin. Ozone: Science and Engineering. 2004 Dec 1;26(6):525-37.

21-  Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Liu YS. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of Environmental Science and Health, Part B. 2011 Mar 7;46(3):272-80.

22-  Thiele‐Bruhn S. Pharmaceutical antibiotic compounds in soils–a review. Journal of plant nutrition and soil science. 2003 Apr;166(2):145-67.

23-  Gagné F, Blaise C, André C. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicology and environmental safety. 2006 Jul 1;64(3):329-36.

24-  Ahmadpour N, Sayadi MH, Sobhani S, Hajiani M. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. Journal of Environmental Management. 2020 Oct 1;271:110964.

25-  Lofrano G, Pedrazzani R, Libralato G, Carotenuto M. Advanced oxidation processes for antibiotics removal: a review. Current organic chemistry. 2017 May 1;21(12):1054-67.

26-  Timm A, Borowska E, Majewsky M, Merel S, Zwiener C, Bräse S, Horn H. Photolysis of four β‑lactam antibiotics under simulated environmental conditions: Degradation, transformation products and antibacterial activity. Science of the Total Environment. 2019 Feb 15;651:1605-12.

27-  Sayadi MH, Sobhani S, Shekari H. Photocatalytic degradation of azithromycin using GO@ Fe3O4/ZnO/SnO2 nanocomposites. Journal of Cleaner Production. 2019 Sep 20;232:127-36.

28-  Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment. 2017 Oct 15;596:303-20.

29-  Omar TF, Ahmad A, Aris AZ, Yusoff FM. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC Trends in Analytical Chemistry. 2016 Dec 1;85:241-59.

30-  El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence. 2010 Dec 1;130(12):2327-31.

31-  Yazdani A, Sayadi MH. Sonochemical degradation of azithromycin in aqueous solution. Journal of Environmental Health Management and Engineering.2018 May 10;5(2):85-92.

32-  Zhang C, Chen Z, Li J, Guo Y, Cheng F. Removal of recalcitrant organic pollutants from bio-treated coking wastewater using coal-based carbonaceous materials. Desalination and Water Treatment. 2017;88:75-84.

33-  Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices–a review. Journal of environmental management. 2011 Oct 1;92(10):2304-47.

34-  Sayadi AR, Asadpour M, Shabani Z, Sayadi MH. Pharmaceutical pollution of the eco-system and its detrimental effects on public health. Journal of Rafsanjan University of Medical Sciences. 2012;11(3):269-84.

35-  Duong HA, Pham NH, Nguyen HT, Hoang TT, Pham HV, Pham VC, Berg M, Giger W, Alder AC. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere. 2008 Jun 1;72(6):968-73.

36-  Botitsi E, Frosyni C, Tsipi D. Determination of pharmaceuticals from different therapeutic classes in wastewaters by liquid chromatography–electrospray ionization–tandem mass spectrometry. Analytical and bioanalytical chemistry. 2007 Feb;387(4):1317-27.

37-  Martins AF, Vasconcelos TG, Henriques DM, Frank CD, König A, Kümmerer K. Concentration of ciprofloxacin in Brazilian hospital effluent and preliminary risk assessment: a case study. CLEAN–Soil, Air, Water. 2008 Mar;36(3):264-9.

38-  Kümmerer K. Antibiotics in the aquatic environment–a review–part I. Chemosphere. 2009 Apr 1;75(4):417-34.

39-  Färber H. Antibiotika im Krankenhausabwasser. Hyg. Med. 2002;27:35.

40-  Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE. Determination of antibiotic residues in manure, soil, and surface waters. Acta hydrochimica et hydrobiologica. 2003 Jul;31(1):36-44.

41-  Giger W, Alder AC, Golet EM, Kohler HP, McArdell CS, Molnar E, Siegrist H, Suter MJ. Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. CHIMIA International Journal for Chemistry. 2003 Sep 1;57(9):485-91.

42-  Giger W, Alder AC, Golet EM, Kohler HP, McArdell CS, Molnar E, Pham Thi NA, Siegrist H. Antibiotikaspuren auf dem Weg von Spital-und Gemeindeabwasser in die Fliessgewässer: Umweltanalytische Untersuchungen über Einträge und Verhalten. Spurenstoffe in Gewässern. Pharmazeutische Reststoffe und endokrin wirksame Substanzen. Spurenstoffe in Gewässern. Pharmazeutische Reststoffe und endokrinwirksame Substanzen (Trace materials in bodies of water. Pharmaceutical trace materials and endocrine active substances). Wiley-VCH GmbH &Co, New Jersey, USA. 2003 Oct 8:21-33.

43-  Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N. Removal of pharmaceuticals during drinking water treatment. Environmental science & technology. 2002 Sep 1;36(17):3855-63.

44-  Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology. 2002 Mar 15;36(6):1202-11.\

45-  Alexy R, Sommer A, Lange FT, Kümmerer K. Local use of antibiotics and their input and fate in a small sewage treatment plant–significance of balancing and analysis on a local scale vs. nationwide scale. Acta hydrochimica et hydrobiologica. 2006 Dec;34(6):587-92.

46-  Hirsch R, Ternes T, Haberer K, Kratz KL. Occurrence of antibiotics in the aquatic environment. Science of the Total environment. 1999 Jan 12;225(1-2):109-18.

47-  Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R. Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environmental Science & Technology. 2003 Apr 1;37(7):1241-8.

48-  Yuan Y, Zhang H, Pan G. Flocculation of cyanobacterial cells using coal fly ash modified chitosan. Water research. 2016 Jun 15;97:11-8.

49-  Asadi Z. Investigation of the efficiency of coagulation process for ciprofloxacin antibiotic removal from aqueous solution. Journal of health research in community. 2019 May 10;5(1):38-48

50-  Suarez S, Lema JM, Omil F. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresource technology. 2009 Apr 1;100(7):2138-46.

51-  Kord Mostafapoor F, Ahmadi SH, Balarak DA, Rahdar SO. Comparison of dissolved air flotation process for aniline and penicillin G removal from aqueous solutions. Avicenna Journal of Clinical Medicine. 2017 Mar 15;23(4):360-9.

52-  Martínez F, López-Muñoz MJ, Aguado J, Melero JA, Arsuaga J, Sotto A, Molina R, Segura Y, Pariente MI, Revilla A, Cerro L. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water research. 2013 Oct 1;47(15):5647-58.

53-  Mohaghegh, Removal of Cefixime antibiotics from the effluents of antibiotic factories using microfilter, nanofilter, reverse osmosis and activated carbon membrane systems, First National Conference on Nanotechnology Advantages and Applications. 2013 Mar 6.

54-  Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water research. 2009 May 1;43(9):2419-30.

55-  Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M, Ferro-García MA, Bautista-Toledo I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. Journal of hazardous materials. 2009 Oct 15;170(1):298-305.

56-  Choi KJ, Kim SG, Kim SH. Removal of antibiotics by coagulation and granular activated carbon filtration. Journal of hazardous materials. 2008 Feb 28;151(1):38-43.

57-  Kim SH, Shon HK, Ngo HH. Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. Journal of Industrial and Engineering Chemistry. 2010 May 25;16(3):344-9.

58-  Zazoli M.A, Blark D, Karimnejad F, Akbari A, Esfandi F. Investigation of penicillin G uptake from aqueous solutions using modified canola. In The 16th National Conference on Environmental Health of Iran-Tabtiz university of medical sciences.‎ 2013  Oct 1; 1(2): 36-43.

59-  Majidi S, Rahmani A,  Samadi M, Shokouhi R. Determining the efficiency of sonolectrofenton process in removing ciprofloxacin antibiotic from aqueous solutions. Scientific Research Journal of Ilam University of Medical Sciences. 2016 Jan 10; 23(6):85-96.

60-  Malakootian M, Kannan K, Gharaghani MA, Dehdarirad A, Nasiri A, Shahamat YD, Mahdizadeh H. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. Journal of Environmental Chemical Engineering. 2019 Dec 1;7(6):103457.

61-  Ji Z, Liu T, Tian H. Electrochemical degradation of diclofenac for pharmaceutical wastewater treatment. Int. J. Electrochem. Sci. 2017 Aug 1;12(8):7807-16.

62-  Chelliapan S, Wilby T, Sallis PJ. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Research. 2006 Feb 1;40(3):507-16.

63-  Arikan OA. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. Journal of Hazardous Materials. 2008 Oct 30;158(2-3):485-90.

64-  Liu H, Yang Y, Sun H, Zhao L, Liu Y. Fate of tetracycline in enhanced biological nutrient removal process. Chemosphere. 2018 Feb 1;193:998-1003.

65-  Tran NH, Chen H, Reinhard M, Mao F, Gin KY. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research. 2016 Nov 1;104:461-72.

66-  Bedner M, MacCrehan WA. Reactions of the amine-containing drugs fluoxetine and metoprolol during chlorination and dechlorination processes used in wastewater treatment. Chemosphere. 2006 Dec 1;65(11):2130-7.

67-  Alvarino T, Suarez S, Lema JM, Omil F. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. Journal of Hazardous materials. 2014 Aug 15;278:506-13.

68-  Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. 2013 Oct 1;93(7):1268-87.

69-  Heijman SG, Verliefde AR, Cornelissen ER, Amy G, Van Dijk JC. Influence of natural organic matter (NOM) fouling on the removal of pharmaceuticals by nanofiltration and activated carbon filtration. Water Science and Technology: Water Supply. 2007 Dec;7(4):17-23.

70-  Kaya Y, Bacaksiz AM, Golebatmaz U, Vergili I, Gönder ZB, Yilmaz G. Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition. Bioprocess and biosystems engineering. 2016 Apr 1;39(4):661-76.

71-  Kimura K, Hara H, Watanabe Y. Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination. 2005 Jul 10;178(1-3):135-40.

72-  Saravia F, Frimmel FH. Role of NOM in the performance of adsorption-membrane hybrid systems applied for the removal of pharmaceuticals. Desalination. 2008 Apr 15;224(1-3):168-71.

73-  Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment international. 2009 Feb 1;35(2):402-17.

74-  Ayoub K, van Hullebusch ED, Cassir M, Bermond A. Application of advanced oxidation processes for TNT removal: a review. Journal of hazardous materials. 2010 Jun 15;178(1-3):10-28.

75-  Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis today. 2009 Sep 15;147(1):1-59.

76-  Ahmadpour N, Sayadi MH, Sobhani S, Hajiani M. A potential natural solar light active photocatalyst using magnetic ZnFe2O4@ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution. Journal of Cleaner Production. 2020 Sep 20;268:122023.

77-  Guinea E, Arias C, Cabot PL, Garrido JA, Rodríguez RM, Centellas F, Brillas E. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Research. 2008 Jan 1;42(1-2):499-511.

78-  Yargeau V, Leclair C. Impact of operating conditions on decomposition of antibiotics during ozonation: a review. Ozone: Science and Engineering. 2008 May 29;30(3):175-88.

79-  Esplugas S, Bila DM, Krause LG, Dezotti M. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of hazardous materials. 2007 Nov 19;149(3):631-42.

80-  Ince NH, Apikyan IG. Combination of activated carbon adsorption with light-enhanced chemical oxidation via hydrogen peroxide. Water Research. 2000 Dec 1;34(17):4169-76.

81-  Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water research. 2018 Oct 1;142:26-45.

82-  Jain B, Singh AK, Kim H, Lichtfouse E, Sharma VK. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environmental Chemistry Letters. 2018 Sep;16(3):947-67.

83-  Gottschalk C, Libra JA, Saupe A. Ozonation of water and waste water: A practical guide to understanding ozone and its applications. John Wiley & Sons; 2009 Dec 9.

84-  Zaviska F, Drogui P, Mercier G, Blais JF. Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels: Application à la dégradation des polluants réfractaires. Revue des sciences de l'eau/Journal of Water Science. 2009;22(4):535-64.

85-  Litter MI. Introduction to photochemical advanced oxidation processes for water treatment. InEnvironmental photochemistry part II 2005 Sep (pp. 325-366). Springer, Berlin, Heidelberg.

86-  Buxton G, Greenstock C. Critical Review of Rate Constants for Reactions of e– aq, H· and HO· in Aqueous Solutions. Jour. Phys. Chem. Ref. Data. 1988;17:2.

87-  Stylianou SK, Katsoyiannis IA, Mitrakas M, Zouboulis AI. Application of a ceramic membrane contacting process for ozone and peroxone treatment of micropollutant contaminated surface water. Journal of hazardous materials. 2018 Sep 15;358:129-35.

88-  Chen X, Richard J, Liu Y, Dopp E, Tuerk J, Bester K. Ozonation products of triclosan in advanced wastewater treatment. Water Research. 2012 May 1;46(7):2247-56.

89-  Yonar T. Decolorisation of textile dyeing effluents using advanced oxidation processes. Advances in treating textile effluent. 2011 Oct 26.

90-  EPA. Handbook on Advanced Non-Photochemical Oxidation Process, US. EPA, 2001. Washington, DC.

91-  Homem V, Alves A, Santos L. Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments. Science of the total environment. 2010 Nov 15;408(24):6272-80.

92-  Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ. An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology. 2008 Oct;83(10):1323-38.

93-  Ahmadpour N, Sayadi MH, Verma A, Mansouri B. Ultrasonic degradation of ibuprofen from the aqueous solution in the presence of titanium dioxide nanoparticles/hydrogen peroxide. Water Treat. 2019 Mar 1;145:291-9.

94-  Doosti MR, Kargar R, Sayadi MH. Water treatment using ultrasonic assistance: A review. Proceedings of the International Academy of Ecology and Environmental Sciences. 2012 Jun 1;2(2):96.

95-  Sayadi MH, Ahmadpour N. The ultrasonic of drug removal using catalysts from aqueous solutions. International Journal of Environmental Sciences & Natural Resources. 2017;5(4):82-5.

96-  Yazdani A, Sayadi M, Heidari A. Sonocatalyst efficiency of palladium-graphene oxide nanocomposite for ibuprofen degradation from aqueous solution. Journal of Water and Environmental Nanotechnology. 2019 Oct 1;4(4):333-42.

97-  Andreozzi R, Canterino M, Marotta R, Paxeus N. Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of hazardous Materials. 2005 Jul 15;122(3):243-50.

98-  Elmolla ES, Chaudhuri M. Improvement of biodegradability of synthetic amoxicillin wastewater by photo-Fenton process. World Applied Science Journal. 2009;5:53-8.

99-  Elmolla E, Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. Journal of hazardous materials. 2009 Oct 30;170(2-3):666-72.

100-          Michael I, Hapeshi E, Michael C, Fatta-Kassinos D. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters. Water research. 2010 Oct 1;44(18):5450-62.

101-          Guo T, Wang K, Zhang G, Wu X. A novel α-Fe2O3@ g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Applied Surface Science. 2019 Mar 1;469:331-9.

102-          Koltsakidou Α, Antonopoulou M, Sykiotou M, Εvgenidou Ε, Konstantinou I, Lambropoulou DA. Photo-Fenton and Fenton-like processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar radiation. Environmental Science and Pollution Research. 2017 Feb 1;24(5):4791-800.

103-          de Luna MD, Briones RM, Su CC, Lu MC. Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor. Chemosphere. 2013 Jan 1;90(4):1444-8.

104-          Naddeo V, Meriç S, Kassinos D, Belgiorno V, Guida M. Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water research. 2009 Sep 1;43(16):4019-27.

105-          Al-Hamadani YA, Jung C, Im JK, Boateng LK, Flora JR, Jang M, Heo J, Park CM, Yoon Y. Sonocatalytic degradation coupled with single-walled carbon nanotubes for removal of ibuprofen and sulfamethoxazole. Chemical Engineering Science. 2017 Apr 27;162:300-8.

106-          Timm A, Borowska E, Majewsky M, Merel S, Zwiener C, Bräse S, Horn H. Photolysis of four β‑lactam antibiotics under simulated environmental conditions: Degradation, transformation products and antibacterial activity. Science of the Total Environment. 2019 Feb 15;651:1605-12.

107-          Ribeiro AR, Lutze HV, Schmidt TC. Base-catalyzed hydrolysis and speciation-dependent photolysis of two cephalosporin antibiotics, ceftiofur and cefapirin. Water research. 2018 May 1;134:253-60.

108-          Baena-Nogueras RM, González-Mazo E, Lara-Martín PA. Photolysis of antibiotics under simulated sunlight irradiation: identification of photoproducts by high-resolution mass spectrometry. Environmental science & technology. 2017 Mar 21;51(6):3148-56.

109-          Kondrakov AO, Ignatev AN, Frimmel FH, Bräse S, Horn H, Revelsky AI. Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: a comparative study. Applied Catalysis B: Environmental. 2014 Nov 1;160:106-14.

110-          Wang XH, Lin AY. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environmental science & technology. 2012 Nov 20;46(22):12417-26.

111-          Rozas O, Contreras D, Mondaca MA, Pérez-Moya M, Mansilla HD. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. Journal of hazardous materials. 2010 May 15;177(1-3):1025-30.

112-          Ghaly MY, Härtel G, Mayer R, Haseneder R. Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. waste management. 2001 Jan 1;21(1):41-7.

113-          Sayadi MH, Ahmadpour N, Homaeigohar S. Photocatalytic and Antibacterial Properties of Ag-CuFe2O4@ WO3 Magnetic Nanocomposite. Nanomaterials. 2021 Feb;11(2):298.

114-          Gaya UI, Abdullah AH. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of photochemistry and photobiology C: Photochemistry reviews. 2008 Mar 1;9(1):1-2.

115-          Daneshvar N, Aber S, Dorraji MS, Khataee AR, Rasoulifard MH. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and purification Technology. 2007 Dec 1;58(1):91-8.

116-          Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA. Photodegradation of o-cresol by ZnO under UV irradiation. J. Am. Sci. 2011;7(8):165-70.

117-          Nasseh N, Taghavi L, Barikbin B, Nasseri MA. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. Journal of cleaner production. 2018 Apr 1;179:42-54.

118-          Gholami A, Hajiani M, Sayadi Anari MH. Investigation of photocatalytic degradation of clindamycin by TiO2. Journal of Water and Environmental Nanotechnology. 2019 Apr 1;4(2):139-46.

119-          Gan Y, Wei Y, Xiong J, Cheng G. Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO2 nanocrystallite aggregates towards ciprofloxacin removal. Chemical Engineering Journal. 2018 Oct 1;349:1-6.

120-          Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I. Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Research. 2008 Jan 1;42(1-2):386-94.

121-          Wei X, Chen J, Xie Q, Zhang S, Ge L, Qiao X. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin. Environmental science & technology. 2013 May 7;47(9):4284-90.

122-          Jiang M, Wang L, Ji R. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Chemosphere. 2010 Sep 1;80(11):1399-405.

123-          Ryan CC, Tan DT, Arnold WA. Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water research. 2011 Jan 1;45(3):1280-6.

124-          López‐Peñalver JJ, Sánchez‐Polo M, Gómez‐Pacheco CV, Rivera‐Utrilla J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. Journal of Chemical Technology & Biotechnology. 2010 Oct;85(10):1325-33.

125-          Murgolo S, Petronella F, Ciannarella R, Comparelli R, Agostiano A, Curri ML, Mascolo G. UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catalysis Today. 2015 Feb 1;240:114-24.

126-          Gar Alalm M, Tawfik A, Ookawara S. Solar photocatalytic degradation of phenol by TiO2/AC prepared by temperature impregnation method. Desalination and Water Treatment. 2016 Jan 8;57(2):835-44.