ارتباط بین پارامترهای فیزیکوشیمیایی و شاخص‌های کیفی آب برای مصارف مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس، گنبدکاووس، ایران .

2 دانشجوی دکتری مهندسی منابع آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

چکیده

چکیده
مقدمه: با توجه به پیچیدگی و مشکلات استفاده از برخی شاخص‌ها، یافتن ارتباط ساده‌تر بین پارامترهای فیزیکوشیمیایی و شاخص‌ها از اهمیت بالایی برخوردار است. این پژوهش به‌منظور تعیین روابط بین پارامترهای فیزیکوشیمیایی و شاخص‌های کیفی آب در بخش‌های مختلف انجام ‌شد.
روش­: در این پژوهش، ابتدا تیپ غالب آب رودخانه‌های گاماسیاب و قره‌سو با استفاده از نمودار شعاعی تعیین گردید. سپس به‌منظور طبقه‌بندی کیفی آب این دو رودخانه از چهارده شاخص کیفی آب در بخش‌های شرب، کشاورزی و صنعت به همراه استانداردهای ملی آب شرب 1053 و WHO استفاده شد. جهت تعیین روابط بین شاخص‌های کیفی و پارامترهای فیزیکوشیمیایی آب از رگرسیون خطی استفاده شد. در نهایت برای صحت و سقم نتایج حاصل از رگرسیون خطی، روابط بدست آمده برای دو منابع آبی دیگر (رودخانه و خلیج گرگان) آزمایش شد.
یافته­ ها: براساس نتایج هیدروشیمی، تیپ غالب آب هر دو رودخانه Ca-HCO3 می‌باشد. براساس دیاگرام‌ها و معیارهای مربوط به شرب و کشاورزی، کیفیت آب هر دو رودخانه در محدوده مطلوب قرار دارد. نتایج شاخص‌های لانژیلر، رایزنر، لارسون-اسکلد و پوکوریوس نشان داد که آب رودخانه‌ها در بخش صنعت خورنده می‌باشد. همچنین وضعیت کیفی آب در ایستگاه‌های مورد مطالعه جهت شرب دام مناسب می‌باشد. نتایج حاصل از رگرسیون خطی بین شاخص‌های کیفی با پارامترهای فیزیکوشیمیایی آب و برخی نسبت‌های یونی نشان داد روابط حاصله برای محاسبه شاخص‌های کیفی را می‌توان برای تیپ‌های مختلف آب‌ از شیرین تا شور استفاده نمود. همچنین، مقایسه نتایج حاصل از شبیه سازی رگرسیون خطی با شاخص‌های کیفی آب، نشان از دقت بالای روابط حاصله در طبقه‌بندی آب برای مصارف مختلف دارد.
نتیجه­ گیری: یکی از متداول‌ترین روش‌ها برای تعیین کاربری آب در بخش‌های مختلف استفاده از شاخص‌های کیفی آب است. نتایج حاصل از روابط حاصله از رگرسیون خطی نشان از عملکرد و کارایی بهتری نسبت به روش‌های طبقه‌بندی پیشین آب دارد. برازش پارامترهای کیفی رودخانه اوغان و خلیج گرگان با روابط بدست آمده از رگرسیون خطی نشان از همپوشانی و برازش مطلوب روابط استخراجی با شاخص‌های کیفی آب دارد. این امر بیانگر سازگاری روابط حاصله با تیپ آب‌های شیرین و شور می‌باشد. بنابراین پیشنهاد می‌گردد که از این روابط در رودخانه‌های تیپ بی‌کربنات کلسیک و کلره سدیک در طبقه‌بندی آب جهت مصارف مختلف استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Relationship Between Physico-Chemical Parameters and Water Quality Indices for Different Uses

نویسندگان [English]

  • Mojtaba G.Mahmoodlu 1
  • Maryam Sayadi 2
1 Assistant Professor of Range and Watershed Management, College of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran.
2 Ph.D. Student in water resources engineering, College of Agriculture, Urmia University, Urmia, Iran.
چکیده [English]

Abstract
Introduction: It is important to find a simple connection between physic-chemical parameters and indices due to complexity and difficulties of using some indices. This research was performed to determine the relationship between physicochemical parameters and water quality indices
Methods: In this research, dominant water type of Gamasyab and GharehSou rivers was first determined using radial diagram. Then, to classify the water quality of two rivers, 14 quality water indices together with national standards for drinking water 1053 and WHO were used. Linear regression was used to determine the relationships between quality indices and physicochemical parameters. Finally, for the accuracy of the results of linear regression, the obtained relationships were tested for two other water sources (river and Gorgan Bay).
Findings: Based on hydrochemical results, the predominant type of water in both rivers is Ca-HCO3. Based on diagrams and criteria related to drinking and agriculture, the water quality of both rivers is in the desired range. The results of Langelier, Ryznar, Larsson-Skold and Puckorius indices showed that water quality for the industrial sector was relatively corrosive. Also, the water quality at the study stations is suitable for livestock drinking. The results of linear regression between quality indices with physicochemical parameters of water and some ion ratios showed that the resulting relationships for calculating quality indices can be used for different water types from fresh to saline. Also, comparing the results of linear regression simulations with water quality indicators, indicates the high accuracy of the relationships in water classification for different uses.

کلیدواژه‌ها [English]

  • Kolmogorov-Smirnov Test
  • Water quality parameters
  • Linear Regression
  • Water quality indices

1.       Khalaji M, Ebrahimi E, Motaghe E, Asadola S, Hashemenejad H. Water quality assessment of the Zayandehroud Lake using WQI index TT - WQI. Isfj [Internet]. 2017;25(5):51–63. [In Persian]

2.       Ghaedamini F, Zamani-Ahmadmahmoodi R, Najafi M. Water quality assessment of Pireghar river in order to drinking and aquaculture, Chaharmahal & Bakhtiari Province. J Nat Environ [Internet]. 2018;70(3):673–84. [In Persian]

3.       Mokhtari SA, Aalighadri M, Hazrati S, Sadeghi H, Gharari N, Ghorbani L. Evaluation of Corrosion and Precipitation Potential in Ardebil Drinking Water Distribution System by Using Langelier & Ryznar Indexes. J Heal [Internet]. 2010;1(1):14–23.[In Persian]

4.       noori  zahra, malekian A. The Effective Factors on Water Quality of Seimareh and Kashkan Rivers in Ilam and Lorestan Provinces. J Nat Environ [Internet]. 2016;69(2):549–64. [In Persian]

5.       Irani T, Miryaghoubzadeh MH. The investigation of land use change trends and its impact on water quality of Zarrinehroud (West Azarbaijan). Watershed Eng Manag [Internet]. 2019;11(1):76–87. [In Persian]

6.       Cunha DGF, Sabogal-Paz LP, Dodds WK. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecol Eng. 2016;94:516–24.

7.       Falah F, Haghizadeh A. Hydrochemical evaluation of river water quality—a case study: Horroud River. Appl Water Sci. 2017;7(8):4725–33.

8.       Bastanifar I. Analysis of a planner institution to avoid time inconsistency  of civil  budgeting (Case Study: Isfahan Municipality). J Econ Res (Tahghighat- E- Eghtesadi) [Internet]. 2016;51(2):275–306. [In Persian]

9.       Jain CK, Vaid U. Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Nalbari district of Assam, India. Environ Earth Sci. 2018;77(6):3301–16.

10.   Kumar M, Kumari K, Ramanathan A, Saxena R. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ Geol. 2007;53(3):553–74.

11.   Wilcox L V. Classification and Use of Irrigation Waters. Vol. Circular N, United States Department of Agriculture. US Department of Agriculture; 1955. 19 p.

12.   Paliwal K V. Irrigation with saline water. IARI, Monograph no. 2. New Sci New Delhi. 1972;

13.   You SH, Tseng DH, Guo GL. A case study on the wastewater reclamation and reuse in the semiconductor industry. Resour Conserv Recycl. 2001;32(1):73–81.

14.   Strauss SD, Puckorius PR. Cooling-water treatment for control of scaling, fouling, corrosion. Power. 1984;128(6):S1–24.

15.   LARSON TE, SKOLD R V. Laboratory Studies Relating Mineral Quality of Water To Corrosion of Steel and Cast Iron. Corrosion. 1958;14(6):43–6.

16.   Tripathi BM, Kim M, Lai-Hoe A, Shukor NAA, Rahim RA, Go R, et al. PH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol Ecol. 2013;86(2):303–11.

17.   Organization WH, WHO. Guidelines for drinking-water quality. Vol. 1. World Health Organization; 2004.

18.   Bhat MS, Ray S, Datta PM. A new assemblage of freshwater sharks (Chondrichthyes: Elasmobranchii) from the Upper Triassic of India. Geobios. 2018;51(4):269–83.

19.   Atikul Islam M, Zahid A, Rahman MM, Rahman MS, Islam MJ, Akter Y, et al. Investigation of Groundwater Quality and Its Suitability for Drinking and Agricultural Use in the South Central Part of the Coastal Region in Bangladesh. Expo Heal. 2017;9(1):27–41.

20.   Zhao G, Li W, Li F, Zhang F, Liu G. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau. Sci Total Environ. 2018;610–611:641–50.

21.   Laxmankumar D, Satyanarayana E, Dhakate R, Saxena PR. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundw Sustain Dev. 2019;8:474–83.

22.   Chien CC, Kao CM, Chen CW, Dong CD, Chien HY. Evaluation of biological stability and corrosion potential in drinking water distribution systems: A case study. Environ Monit Assess. 2009;153(1–4):127–38.

23.   Rezaei Kalantary R, Azari A, Ahmadi E, Ahmadi Jebelli M. Quality evaluation and stability index determination of Qom rural drinking water resources. J Heal F [Internet]. 2014 Apr 6;1(3):9–16. [In Persian]

24.   Asgari G, Ramavandi B, Tarlaniazar M, Fadaie nobandegani A, Berizie Z. Survey of chemical quality and corrosion and scaling potential of drinking water distribution network of Bushehr city. ISMJ [Internet]. 2015;18(2):353–61.[In Persian]

25.   Irandoust H, Mohammadzadeh H. Evaluation chemical quality of drinking water for livestock animals in different regions of Isfahan province. Anim Sci J [Internet]. 2017;30(115):243–54. [In Persian]

1.       Khalaji M, Ebrahimi E, Motaghe E, Asadola S, Hashemenejad H. Water quality assessment of the Zayandehroud Lake using WQI index TT - WQI. Isfj [Internet]. 2017;25(5):51–63. [In Persian]

2.       Ghaedamini F, Zamani-Ahmadmahmoodi R, Najafi M. Water quality assessment of Pireghar river in order to drinking and aquaculture, Chaharmahal & Bakhtiari Province. J Nat Environ [Internet]. 2018;70(3):673–84. [In Persian]

3.       Mokhtari SA, Aalighadri M, Hazrati S, Sadeghi H, Gharari N, Ghorbani L. Evaluation of Corrosion and Precipitation Potential in Ardebil Drinking Water Distribution System by Using Langelier & Ryznar Indexes. J Heal [Internet]. 2010;1(1):14–23.[In Persian]

4.       noori  zahra, malekian A. The Effective Factors on Water Quality of Seimareh and Kashkan Rivers in Ilam and Lorestan Provinces. J Nat Environ [Internet]. 2016;69(2):549–64. [In Persian]

5.       Irani T, Miryaghoubzadeh MH. The investigation of land use change trends and its impact on water quality of Zarrinehroud (West Azarbaijan). Watershed Eng Manag [Internet]. 2019;11(1):76–87. [In Persian]

6.       Cunha DGF, Sabogal-Paz LP, Dodds WK. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecol Eng. 2016;94:516–24.

7.       Falah F, Haghizadeh A. Hydrochemical evaluation of river water quality—a case study: Horroud River. Appl Water Sci. 2017;7(8):4725–33.

8.       Bastanifar I. Analysis of a planner institution to avoid time inconsistency  of civil  budgeting (Case Study: Isfahan Municipality). J Econ Res (Tahghighat- E- Eghtesadi) [Internet]. 2016;51(2):275–306. [In Persian]

9.       Jain CK, Vaid U. Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Nalbari district of Assam, India. Environ Earth Sci. 2018;77(6):3301–16.

10.   Kumar M, Kumari K, Ramanathan A, Saxena R. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ Geol. 2007;53(3):553–74.

11.   Wilcox L V. Classification and Use of Irrigation Waters. Vol. Circular N, United States Department of Agriculture. US Department of Agriculture; 1955. 19 p.

12.   Paliwal K V. Irrigation with saline water. IARI, Monograph no. 2. New Sci New Delhi. 1972;

13.   You SH, Tseng DH, Guo GL. A case study on the wastewater reclamation and reuse in the semiconductor industry. Resour Conserv Recycl. 2001;32(1):73–81.

14.   Strauss SD, Puckorius PR. Cooling-water treatment for control of scaling, fouling, corrosion. Power. 1984;128(6):S1–24.

15.   LARSON TE, SKOLD R V. Laboratory Studies Relating Mineral Quality of Water To Corrosion of Steel and Cast Iron. Corrosion. 1958;14(6):43–6.

16.   Tripathi BM, Kim M, Lai-Hoe A, Shukor NAA, Rahim RA, Go R, et al. PH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol Ecol. 2013;86(2):303–11.

17.   Organization WH, WHO. Guidelines for drinking-water quality. Vol. 1. World Health Organization; 2004.

18.   Bhat MS, Ray S, Datta PM. A new assemblage of freshwater sharks (Chondrichthyes: Elasmobranchii) from the Upper Triassic of India. Geobios. 2018;51(4):269–83.

19.   Atikul Islam M, Zahid A, Rahman MM, Rahman MS, Islam MJ, Akter Y, et al. Investigation of Groundwater Quality and Its Suitability for Drinking and Agricultural Use in the South Central Part of the Coastal Region in Bangladesh. Expo Heal. 2017;9(1):27–41.

20.   Zhao G, Li W, Li F, Zhang F, Liu G. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau. Sci Total Environ. 2018;610–611:641–50.

21.   Laxmankumar D, Satyanarayana E, Dhakate R, Saxena PR. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundw Sustain Dev. 2019;8:474–83.

22.   Chien CC, Kao CM, Chen CW, Dong CD, Chien HY. Evaluation of biological stability and corrosion potential in drinking water distribution systems: A case study. Environ Monit Assess. 2009;153(1–4):127–38.

23.   Rezaei Kalantary R, Azari A, Ahmadi E, Ahmadi Jebelli M. Quality evaluation and stability index determination of Qom rural drinking water resources. J Heal F [Internet]. 2014 Apr 6;1(3):9–16. [In Persian]

24.   Asgari G, Ramavandi B, Tarlaniazar M, Fadaie nobandegani A, Berizie Z. Survey of chemical quality and corrosion and scaling potential of drinking water distribution network of Bushehr city. ISMJ [Internet]. 2015;18(2):353–61.[In Persian]

25.   Irandoust H, Mohammadzadeh H. Evaluation chemical quality of drinking water for livestock animals in different regions of Isfahan province. Anim Sci J [Internet]. 2017;30(115):243–54. [In Persian]