سیاست‌گذاری توام عرضه و تقاضا محور منابع آب با استفاده از مدیریت پارامترهای فشار (مطالعه موردی: حوضه آبریز خزر)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، استان مرکزی، ایران./پژوهشگر گروه توسعه پایدار چشم انداز، موسسه علوم زمین و جغرافیا، دانشگاه Martin Luther ، Halle-Wittenberg، آلمان.

2 استادیار گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، استان مرکزی، ایران.

3 پژوهشگر گروه توسعه پایدار چشم انداز، موسسه علوم زمین و جغرافیا، دانشگاه Martin Luther ، Halle-Wittenberg، آلمان.

چکیده

چکیده
مقدمه: در حال حاضر یکی از عمده‌ترین مشکلات مدیریت منابع آب در ایران،این است که جایگاه فعلی و آینده منابع آب در رشد و توسعه کشور بخوبی مشخص نیست. حوضه خزر یکی از شش حوضه آبریز اصلی کشورمان می‌باشد که طی سال‌های گذشته بدلیل رشد جمعیت، مصرف‌گرایی، افزایش تقاضا و غیره، وضعیت منابع آب آن در معرض فشارهای زیادی قرار گرفته است. لذا در این مقاله سعی شده است با شناسایی و مدیریت عوامل فشار طبیعی و غیرطبیعی تاثیرگذار بر سیاست توام عرضه و تقاضا محور، به‌عنوان سیاست کارا و موثر مدیریت منابع آب در حوضه آبریز خزر، در این حوضه گام برداشته شود.
روش­: در این راستا سعی شده است ابتدا عوامل فشار بر منابع آب شناسایی شده، سپس این عوامل اولیت‌بندی گردند و در نهایت نوع سیستم مدیریت منابع آب مناسب برای آنها مشخص شود. به همین‌منظور در شروع کار به کمک مدل DPSIR، وضعیت منابع آب در حوضه آبریز خزر تجزیه و تحلیل شده است و سپس پارامترهای فشار در این حوضه در دو دسته انسانی و غیر انسانی (با هشت زیرمعیار) و به کمک نظرات 36 متخصص در زمینه محیط‌زیست و منابع آب و با استفاده از روش فازی ای ان پی(FANP)، اولویت‌بندی گردیده‌اند.
یافته­ها: نتایج نشان می‌دهد که در حوضه آبریز خزر پارامتر انسانی با امتیاز 807/0 نسبت به پارامتر غیرانسانی از اهمیت بیشتری برخوردار است. از بین زیرمعیارها نیز پارامتر مصرف آب کشاورزی با  243/0 امتیاز و سدسازی با 039/0 امتیاز بیشترین و کمترین امتیاز را به خود اختصاص داده‌اند.
نتیجه­گیری: هم‌زمان با رشد و افزایش جمعیت، تغییرات اقلیمی، افزایش مصرف‌گرایی و صنعتی شدن، و غیره در حوضه آبریز خزر نیاز به مدیریت منابع آب نیز در این حوضه افزایش می‌یابد، اما با روند موجود در حال حاضر در آینده‌ای نزدیک منابع آبی کشورمان بشدت تهدید شده و حیات اجتماعی و اقتصادی منطقه نیز به خطر می‌افتد. دلیل اصلی وقوع چنین شرایطی در زمینه مدیریت منابع آب در کشور، نبود سیاست اصولی و مبتنی بر پایداری در زمینه منابع آب در کشورمان می‌باشد که تعیین کننده جایگاه فعلی و آینده کشورمان در زمینه مدیریت منابع آب شیرین در کشور باشد. یکی از اقدامات اساسی و مبرمی که در حال حاضر باید در زمینه مدیریت منابع آب شیرین باید در کشورمان صورت پذیرد بحث تغییر پارادایم مدیریت منابع آب کشورمان می‌باشد. به‌منظور اصلاح سیاست مصرف آب بخش کشاورزی، بدلیل اهمیت استراتژیک و اقتصادی و اجتماعی‌ای که در کشورمان وجود دارد، نیازمند برنامه‌ای تقریب بلند مدت با منابع مالی زیاد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Water Resources Supply-Demand Policy Using Pressure Parameters Management in the Caspian Basin

نویسندگان [English]

  • Amir Hedayati Aghmashhadi 1
  • Amir Ansari 2
  • Azadeh Kazemi 3
1 Associate Prof. of Environment Development, Faculty of Agriculture and Natural Resources, University of Arak, Arak Province, Iran./Department of Sustainable Landscape Development, Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
2 Associate Prof. of Environment Development, Faculty of Agriculture and Natural Resources, University of Arak, Arak Province, Iran.
3 Department of Sustainable Landscape Development, Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
چکیده [English]

Abstract
Introduction: Water conflict is a major challenge that, if left unmanaged, will become a security issue. Although tensions over water have increased, conflicts over shared water resources are more likely to happen. The study aimed to investigate water conflict and its management strategies among farmers.
Methods: The descriptive-survey research method was used. The data-gathering tool was the questionnaire, which its validity was verified through face validity. The study population included farmers who used shared water wells to provide water for agriculture (N=478). Using Cochran's formula, the sample size was 214 farmers who were selected by the simple random sampling method. Data were analyzed using SPSS software.
Findings: The results showed that “drought” and “increasing number of farmers”, with an average score of 3.56 and 3.45, respectively on a scale of 1 to 5, are considered as the main causes of agricultural water conflict. From the farmers’ view, the priority for reducing water conflicts was the participation of farmers in managing water wells and negotiating with farmers around the water. On a scale of 13 to 65 with an average of 38.51, the perceived agricultural water conflict was at the medium level. By increasing farm distance from the well, area of agricultural rental land, and annual income from non-agricultural activities, the perception of agricultural water conflict increased. However, by increasing owned agricultural land area and agricultural income, the perception of agricultural water conflict decreased. The main strategy used by farmers to manage agricultural water conflict was “control”, in which coercion and force are used to manage conflict. The “problem-solving” and “avoidance” strategies were the second and third priorities, respectively.

کلیدواژه‌ها [English]

  • Agriculture
  • Water well
  • Conflict perception
  • Conflict management
References

1.       Zhang, Y., Lu, H., Nie, X., He, L., Du, P. 2016. An interactive inexact fuzzy bounded programming approach for agriculture water quality management”, Agricultural Water Management, 133(4): 104-111.

2.       Huang. G. and Chang, N. 2003. The perspectives of environmental informatics and systems analysis”, Journal of Environmental Informatics, 1(2): 317-330.

3.       Wang, L, Z, Fang, L. and Hipel, K, W. 2015. Water resources allocation: a cooperative game theoretic approach”, Journal of Environmental Informatics, 2, (2):411-431.

4.       Li. Y, P. and Huang, G. 2008. Interval-parameter two-stage stochastic nonlinear programming for water resources management under uncertainty, Water Resources Management, 22)6(:681–698.

5.       Wang, S. and Huang, G, H. 2011. Interactive two-stage stochastic fuzzy programming for water resources management, Journal of Environmental Management, 92)8(:1986-1995.

6.       Li, Y, P., Huang, G., Han, N., Soul, L. 2010. Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method”, Mathematical Problems in Engineering, 2013)3 :( 818-430.

7.       Lu, H, W., Huang, G, H. and He, L. 2010. Development of an interval-valued fuzzy linear programming method based on infinite a-cuts for water resources management, Environmental Modelling & Software, 25(3):354-361.

8.       Lee. C. and Chang, S. 2005. Interactive fuzzy optimization for an economic and environmental balance in a river system, Water Research, 39(1):221-241.

9.       Luo, B., Maqsood, I., Yin, Y., Huang, G, H., Cohen, S. 2017. Adaption to climate change through water trading under uncertainty - an inexact two-stage nonlinear programming approach”, Journal of Environmental Informatics, 2, (2): 140-154.

10.    Dong, C, Huanga, G, H. andTan, Q. 2015. A robust optimization modelling approach for managing water and farmland use between anthropogenic modification and ecosystems protection under uncertainties, Ecological Engineering, 76(3):95-109.

11.    Ministry of Energy. 2013. Studies on the modernization of the country's water comprehensive plan in the basins of Aras, Urmia, Talash - Anzali Lagoon, Sefidroud Bozor, Sefidroud - Haraz, Heraz - Qarasu, Gorganrud and Atrak, 28, 29 and 30, Ministry of Manpower, Deputy Water and Water Resources Department, Macro Planning Office Ab and Abfa, Tehran. [In Persian].

12.   Seyedan, S.M., Kohansal, M.R., and Ghorbani, M. 2017. Achieving the optimal route of extraction from groundwater resources by applying side effects in the Hamadan-Bahar plain. Journal of Watershed Management, 8(1): 191-201.

13.   Sun, S., Wang, y., Liu, J., Cai, H., Wu, P., Geng, Q., Xu, L. 2016. Sustainability Assessment of Regional Water Resources under the DPSIR Framework, Journal of Hydrology, 532: 140-148.

14.   Robele Gari, S., Ortiz Guerrero, C, E., A-Uribe, B., Icely, J, D., Newton, A. 2018. A DPSIR-analysis of water uses and related water quality issues in the Colobian Alto and Medio Dagua Community Council, Journal of Water Science, 32(2): 318-337

15.   ISTAT, C., Costantino, Flkaoo. Falcitelli, A., Femia, A, T. 2003. Human-Environmental Interactions”, OECD-Workshop, Paris, May 14–16: 20‌03.

16.   Vassoneya, E, Mammoliti, A. and Comoglio, M, C. 2017. Use of multicriteria analysis (MCA) for sustainable hydropower planning and management, Journal of Environmental Management,196)5(  :48-55.

17.   Wu, S, M, Huang, G, H. and Guo, H, C. 2016. An interactive inexact-fuzzy approach for multi objective planning of water resource systems, Water Science and Technology, 36(5): 235-242.

18.   Huang, G, H. 1998. A hybrid inexact-stochastic water management model”, European Journal of Operational Research, 107(1): 137-158.

19.    Jairaj. P. G. and Vedula, S. 2017. Multi-reservoir system optimization using fuzzy mathematical programming,Water Resources Management,14 (2): 457–472.

20.     Seifi, A. and Hipel, K, W. 2001. Interior-point method for reservoir operation with stochastic inflows, Journal of Water Resources Planning and Management, 127 (1):546—564.

21.   Maqsood, I, Huang, G, H. and Yeomans, J. 2005. An interval-parameter fuzzy two stage stochastic program for water resources management under uncertainty, European Journal of Operational Research, 167 (1): 208-225.

22.   Li, Y, P., Huang, G, H., Nie, S, L., Qin, X. 2007. ITCLP: an inexact two-stage chance constrained program for planning waste management systems, Resources, Conservation and Recycling, 49(3): 284-307.

23.   Alizadeh, M.R., Nikoo, M,R. andRakhshandehroo, G,R. 2017. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach, Journal of Hydrology, 551(4): 540-554.

24.   Faye, R, Sawadogo, S. and Mora-Camino, F. 2017. Flexible management of water resource systems, Applied Mathematics and Computation, 167(1): 516-527.

25.   Edirisinghe, N, Patterson, E. and Saadouli, N. 2015. Capacity planning model for a multipurpose water reservoir with target-priority operation, Annals of Operations Research, 100(1): 273–303.

26.   Pallottino, S, Sechi, G. and Zuddas, P. 2017. A DSS for water resources management under uncertainty by scenario analysis, Environmental Modelling & Software, 20(8): 1031-1042

27.   Nasiri, F., Maqsood, I., Huang, G., Fuller, N. 2007. Water quality index: a fuzzy riverpollution decision support expert system”, Journal of Water Resources Planning and Management, 133(2): 81-96.

28.   Shafiee, M. 2014. A fuzzy analytic network process model to mitigate the risks associated with offshore wind farms, Expert Systems with Applications, 42(4): 2143-2152.

29.   Statistical Center of Iran. 2013. General population and housing census.