بهینه‌سازی هزینه پمپاژ چاه‌های آب شرب شهری با استفاده از الگوریتم فرا ابتکاریPSO

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه عمران ، واحد بین الملل کیش، دانشگاه آزاد اسلامی ، جزیره کیش، ایران

2 گروه علوم و مهندسی آب، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران ، ایران

3 گروه عمران، دانشگاه بیرجند، بیرجند، ایران

چکیده

هدف: ابداع فن آوری های نو و بهره گیری از روش های پیشرفته  و نرم افزارها در محیط متخلخل کمک زیادی در حل مسایل مرتبط با آبهای زیرزمینی و بهینه سازی آن کرده است. در مناطقی که آب شرب از طریق ذخایر آب زیرزمینی تامین میشود استفاده  روشهای نوین در جهت بهینه سازی اقتصادی کمک زیادی خواهد کرد. هزینه های پمپاژ و میزان مصرف آب باید کنترل و بهینه شده و اثرات متقابل آنها بررسی می شود. تامین اب شرب از منابع آب زیرزمینی باید بر طبق یک برنامه دقیق از پیش طراحی شده انجام گیرد تا هم از نقطه نظر هزینه پمپاژ و هم از نظر انرژی بهینه شده و  آب  با قیمت مناسب و صرف انرژی بهینه به مصرف کننده تحویل شود.
روش­: در این مطالعه از الگوریتم فراابتکاری ازدحام ذرات  (PSO) به منظوره بهینه سازی پمپاژ چاه های آب زیرزمینی که تامین کننده آب شرب هستند استفاده شد. از داده های میزان افت سطح ایستابی و هزینه ی مورد نیاز برای پمپاژ در چاه های طرح تامین اب شرب شهر مشهد استفاده شد. نتایج نشان می­دهد که با بهره­گیری از الگوریتمPSO علاوه بر تامین قیود مسئله ، میتوان هرینه استحصال آب را کم کرد.
یافته­ها: نتایج نشان میدهد که با یکسان نگه داشتن تعداد چاه در طرح موجود و با اعمال این الگوریتم هزینه پمپاژ4.3 درصد کاهش می یابد. همچنین نتایح تحلیل حساسیت نشان می­دهد برای یک مقدار مشخص و ثابت آب، با افزایش 100 درصدی نرخ پمپاژ با دو حلقه چاه نیاز آبی مورد نظر تامین می­شود و هزینه های کل حدود 56 درصد کاهش می­یابد. همچنین با کاهش نرخ پمپاژ، تعداد چاه مورد نیاز برای تامین نیاز آبی مشخص به 7 حلقه افزایش یافته و هزینه های کل 26 درصد افزایش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing the cost of pumping of urban drinking water wells using the PSO metaheuristic Algorithm

نویسندگان [English]

  • Masoud Abdi 1
  • Hossein Ebrahimi 2
  • Abolfazl Akbarpour 3
1 Department of Civil Engineering, Kish International Branch, Islamic Azad University, Kish Island, Iran
2 Department of water science and Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
3 Department of Civil Engineering, Birjand of University, Birjand, Iran
چکیده [English]

The interaction effect of pumping costs and water consumption must be controlled and optimized. Supplying drinking water from underground water resources must be done according to a precise pre-designed plan so that It is optimized for both pumping and energy costs and Water should be delivered to the consumer at a reasonable price and with optimal energy consumption. In this study particle swarm metaheuristic algorithm (PSO) was used to optimize the pumping of groundwater wells that supply drinking water. The data of rate of shortage of statistic surface and the required cost were used for pumping in the Mashhad drinking water supply wells. The results show that by using the PSO algorithm, in addition to providing problem constraints, water extraction could be reduced. Results show that by keeping the number of wells the same in the current design and by applying this algorithm the cost of pumping is reduced by 4.3%. The results of sensitivity analysis also show that for a certain amount of water With a 100% increase in pumping rates with two wells, the water demand will be provided and the total costs will be reduced by about 56 percent. Also by reducing the pumping rate the number of required wells for supplying certain water needs has increased to seven and the total costs will be increased by 26 percent.

کلیدواژه‌ها [English]

  • Groundwater
  • Particle Optimization Algorithm
  • pumping
  • PSO
  1. Elçi A, Ayvaz MT (2014) Differential-evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept. Journal of Hydrology 511:736–749.
  2. Conkling H (1946) Utilization of ground-water storage in stream system development. Transactions of the American Society of Civil Engineers 111(1):275–305
  3. Iran Ministry of Energy (2013) Standards code title 577. Iran Ministry of Energy Press, Tehran (In Persian).
  4. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proc. of the Sixth International Symposium on Micro Machine and Human Science (MHS-1995), 4-6 October, Nagoya, Japan, 39-43.
  5. Baltar, a., and Fontane, D.G,(2004). A multiobjective particle swarm optimization model for reservoir operations and planning. Dept. of Civil and Environmental Engineering. Colorado State University, USA.
  6. McKinney DC, Lin M-D (1994) Genetic algorithm solution of groundwater management models. Water Resources Research 30(6):1897
  7. Huang C, Mayer AS (1997) Pump-and-treat optimization using well locations and pumping rates as decision Water Resources Research 33(5):1001–1012.
  8. Hsiao C-T, Chang L-C (2002) Dynamic optimal groundwater management with inclusion of fixed costs. Journal of Water Resources Planning and Management 128(1):57–65
  9. Katsifarakis KL, Petala Z (2006) Combining genetic algorithms and boundary elements to optimize coastal aquifers management. Journal of Hydrology 327(1-2):200–207.
  10. Gaur S, Chahar B R, Graillot D (2011) Analytic elements method and particle swarm optimization based simulation-optimization model for groundwater management. Journal of Hydrology 402(3-4):217–227
  11. Ch S, Kumar D, Prasad RK, Mathur S (2013) Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization. Journal of Contaminant Hydrology 151:105–116
  12. Ayvaz ,Mt, Elçi A (2013) A groundwater management tool for solving the pumping cost minimization problem for the Tahtali watershed (Izmir-Turkey) using hybrid hs-solver optimization algorithm. Journal of Hydrology 478:63–76.
  13. Ketabchi H, Ataie-Ashtiani B (2011) Development of Combined Ant Colony Optimization Algorithm and Numerical Simulation for Optimal Management of Coastal Aquifers. Iran-Water Resources Research 7(1):1-12
  14. Nakhaei M, Mohammadi M, Rezaie M (2014) Optimizing of aquifer withdrawal numerical model using genetic algorithm (case study: Uromiyeh coastal aquifer). Iran-Water Resources Research 10(2):94-97 (In Persian)
  15. Kennedy,J.(1998).The behavior of Particle, Porto,V. W., Saravanan, N., Waagen,D., and Eiben,.A.e.(eds) ,In Evolutionary Programming VII , Springer ,581-590.
  16. Arumugam,M.S, and M. V. C. Rao, “On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems,” Applied Soft Computing Journal, vol. 8(1), pp. 324–336, 2008.
  17. Ghasemi-Nejad A (2015) Multi-objective water resource allocation planning considering qualitative and quantitative goals (Case study: Doosti Reservoir). M.Sc. Thesis, Shahid Beheshti University (In Persian).
  18. Chaudhry S (2003) Unit cost of desalination. California Desalination Task Force, California Energy Commission, Sacramento, California
  19. Toossab Consulting Engineers Company (2013) National water plan main report (Fifth volume: eastern basins). Iran Ministry of Energy Press, Tehran (In Persian)
  20. Sadeghi tabas S, Samadi SZ, Akbarpour A, Pourreza Bilondi M (2016) Sustainable groundwater modeling using single-and multi-objective optimization algorithms, Journal of Hydroinformatics, 18(5), pp. 1-18, 2016.