بهینه‌سازی چندهدفه جانمایی حسگر تشخیص آلودگی در سیستم توزیع آب شهری با استفاده از الگوریتم بهینه سازی چندهدفه جستجوی هماهنگ

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی آب، دانشگاه بین المللی امام خمینی، قزوین، ایران

چکیده

مقدمه و هدف: سیستم‌های توزیع آب به دلیل ماهیت گسترده جغرافیایی، نسبت به ورود آلودگی‌های عمدی و یا تصادفی بسیار آسیب‌پذیر هستند. وجود چنین تهدیدهایی می‌تواند اعتماد عمومی نسبت به سیستم توزیع آب را تحت تأثیر قرار دهد. سیستم هشدار آلودگی شامل استقرار حسگرهایی در شبکه توزیع آب است که باعث قطع شبکه آب‌رسانی در زمان وقوع آلودگی می‌شوند. با توجه به هزینه زیاد خرید، نصب و نگه‌داری چنین حسگرهایی، باید نسبت به انتخاب محل نصب آن‌ها دقت شود، به نحوی که نصب حسگرها باعث کاهش شدت تلفات و خسارات احتمالی شود. محاسبه محل استقرار این حسگرها بر اساس یکی از اهداف کاهش زمان تشخیص آلودگی، افزایش پوشش حسگرها، کاهش حجم آب آلوده مصرف شده و یا چند هدف همزمان، می تواند انجام شود.
مواد و روش­ها: در این پژوهش با استفاده از مدل بهینه‌سازی چند هدفه الگوریتم جستجوی هماهنگ به محاسبه محل استقرار بهینه حسگرهای تشخیص آلودگی بر اساس دو معیار الف- کاهش زمان تشخیص آلودگی و ب- افزایش پوشش حسگرها پرداخته شده است. با اتصال نرم‌افزار EPANET و نرم افزار MATLAB، اقدام به تشکیل مدل یکپارچه شبیه سازی-بهینه سازی انتشار آلاینده شد و مثال دوم نرم افزار EPANET به عنوان مطالعه موردی بررسی شد.
یافته­ها و بحث: نتایج منحنی بهینه پارتو نشان می‌دهد درحالی‌که زمان تشخیص آلودگی از حدود 13000 ثانیه تا حدود 26000 ثانیه در تغییر است، مقدار پوشش شبکه از حدود 15000 تا 36000 گالن بر دقیقه تغییرمی‌کند. به عبارت دیگر 100% افزایش زمان تشخیص آلودگی منجر به افزایش 140% در پوشش شبکه خواهد شد. همچنین با استفاده از روشهای انتخاب نقطه بهینه نهایی، زمان بهینه تشخیص آلودگی 19296 ثانیه و پوشش بهینه 26494 گالن در دقیقه محاسبه شد.
نتیجه­گیری: نتایج نشان داد در شرایطی که دو هدف از اهمیت یکسان برخوردار باشند یکی از حسگرها درمکانی پر
ازدحام به منظور کاهش زمان تشخصی آلودگی و دیگری در وسط شبکه به منظور افزایش پوشش شبکه قرار می گیرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Multi-Objective Optimization of Locating the Pollution Detection Sensor in the Urban Water Distribution System Using the Multi-Objective Optimization Algorithm of Coordinated Search

نویسندگان [English]

  • hamed mazandarani zadeh
  • matin hendoopor
Department of Water Sciences and Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Introduction:Following the terrorist attacks of September 11, 2001 in the United States, concern about the security of water distribution systems has increased. Water distribution systems are highly vulnerable to intentional or accidental contamination, due to their physical and geographical characteristics. Such threats can affect public trust in the distribution system. Putting a contaminant warning system up, including sensors in the water distribution network, is a hopeful approach to disconnect water supply networks at the time of the occurrence of pollution. Due to the high cost of purchasing, installation and maintenance of such sensors, their location should be calculated by using optimization algorithms.
Materials and Methods:In this research, a multi-objective optimization model has been developed using harmony search algorithm to calculate the optimal location of detection sensors in water distribution systems based on two criteria for minimizing the time detection of pollution and maximizing the coverage of sensors. The simulation of events in different scenarios is done by connecting the EPANET hydraulic model toolbox and the MATLAB software, and the second example of EPANET software is as the case study.
Findings:The results show that the optimal detection time is 19296 seconds
and the optimal coverage is 26494 gallons per minute. By increasing the importance of optimal detection time to the increasing the sensor coverage, the detection time decreased by 32%, and the sensor coverage, by contrast, decreased by 26%.
Conclusion: It seems that in situations where two criteria are of equal importance, one of the sensors is located in a crowded place to reduce the time of contamination detection and the other in the middle of the network to increase network coverage.

کلیدواژه‌ها [English]

  • Contaminate Warning System
  • Biological Attacks
  • Water Supply Network
  • EPANET
  1. Roozbahani, A., Zahraie, B., and Tabesh, M. 2012.  "Water Quantity and Quality Risk Assessment of Urban Water Supply Systems with Consideration of Uncertainties", Journal of Water and Wastewater, 24, 2-12
  2. DOI: 10.1007/s00477-012-0614-9
  3. Hrudey, S. E., Payment, P., Huck, P. M., Gillham, R. W., 2003. "A fatal waterborne 622 disease epidemic in Walkerton, Ontario: Comparison with other waterborne 623 outbreaks in the developed world". Water Science Technology, 47(3), 7–14.
  4. DOI: 10.2166/wst.2003.0146
  5. Lee, B. H. and Deininger, R. A. 1992. "Optimal locations of monitoring stations in water distribution system", Journal of Environmental Engineering, 118(1), 4-16.
  6. https://doi.org/10.1061/(ASCE)0733-9372(1992)118:1(4)
  7. 7.       Kumar A, Kansal M L and Arora G (1997) “Identification of monitoring stations in water Distribution system”. Journal of Environmental Engineering, 123(8), 746-752.
  8. DOI: 10.1061/(ASCE)0733-9372(1999)125:2(202)
  9. Harmant, P., Nace, A., Kiene, L., and Fotoohi F. 1999. “Optimal supervision of drinking water distribution network”. Proceeding, 26th Annual Water Resources Planning and Management Conference, Reston, Va.
  10. DOI: 10.1061/40430(1999)52
  11. DOI: 10.1007/s11269-017-1686-6
  12. Watson, J.P., Greenberg, H.J., and Hart, W. E. 2004, "A multiple-objective analysis of sensor placement optimization in water networks", Proceeding World Water and Environmental Resources Congress, ASCE/EWRI, Cincinnati.
  13. DOI: 10.1061/40737(2004)456
  14. http://ijoce.iust.ac.ir/article-1-218-en.pdf
  15. Berry, J., Fleischer, L., Hart, W.E., Phillips, C.A., and Watson, J.P., 2005 "Sensor placement in municipal water networks", Journal of Water Resources Planning and Management, 131(3), 237-243.
  16. DOI: 10.1061/(ASCE)0733-9496 (2005) 131:3(237)
  17. Ostfeld, A., and Salomons, E. 2008, "The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms", Journal of Water Resources Planning and Management, 134(6), 556-568.
  18. DOI: 10.1061/(ASCE)0733-9496(2008)134:6(556)
  19. Aral M.M, Guan J., and Maslia M.L., 2010, "Optimal design of sensor placement in water distribution networks", Journal of Water Resources Planning and Management, 136(1), 5-18.
  20. DOI: 10.1061/(ASCE)WR.1943-5452.0000001
  21. Cheifetz, N., and Sandraz, A.C., 2015, "An Incremental Sensor Placement Optimization in a Large Real-World Water System", 13th Computer Control for Water Industry Conference, CCWI 2015
  22. DOI: 10.1016/j.proeng.2015.08.977
  23. Piller, O., Deuerlein, J., and Gilbert, D., 2015, "Installing Fixed Sensors for Double Calibration and Early-warning Detection Purposes", 13th Computer Control for Water Industry Conference, CCWI 2015
  24. DOI: 10.1016/j.proeng.2015.08.909
  25. Zhao, Y., Schwartz, R., and Salomons, E., 2016, "New formulation and optimization methods for Water sensor Placement", Environmental Modelling & Software, 76, 128-136.
  26. DOI: 10.1016/j.envsoft.2015.10.030
  27. Khorshidi, S., Nikoo, M., Sadegh M.R., 2018 "Optimal and objective placement of sensors in water distribution systems using information theory", Journal of Water Research, 143, 218-228.
  28. DOI: 10.1016/j.watres.2018.06.050
  29. Sheng W, Liu KY, Li Y, Liu Y and Meng X (2014) “Improved Multiobjective Harmony Search Algorithm with Application to Placement and Sizing of Distributed Generation”. Mathematical Problems in Engineering. Article ID: 871540.
  30. DOI: 10.1155/2014/871540
  31. Geem, Z.W., Kim, J.H., and Loganathan G.V., 2001 "A New Heuristic Optimization Algorithm Harmony Search", Simulation, 76(2), 60-68
  32. DOI: 10.1177/003754970107600201
  33. Haji Rajabi, F., Mazandarani Zadeh, H., 2018, “Multi-Objective optimization of drainage depth based on fair benefits division short-term versus long-term environmental effects”, Journal of Iran-Water Resources Research 13(4):144-153 (In Persian)
  34. http://iwrr.sinaweb.net/article_48027_en.html
  35. Harsanyi, J., and Selten, R., 1972 "A generalized nash solution for two-person bargaining games with incomplete information", Journal of Management Science 18(5): 80-106.
  36. DOI: 10.1287/mnsc.18.5.80
  37. Kalai, E., and Smorodinsky, M., 1975 "Other solutions to Nash's bargaining problem", Journal of Econometrica, 43, 513-518.
  38. DOI: 10.2307/1914280
  39. Krause, A., Leskovec, J., Isovitsch, S., Xu, J., Guestrin, C., Vanbriesen, J., Small, M., and Fischbech, P., 2008 "Optimizing sensor placements in water distribution systems using sub modular function maximization", Proceeding, 8th Annual Water Distribution Systems Analysis Symposium. ASCE, Reston, Cincinnati.
  40. DOI: 10.1061/40941(247)109
  41. Manjarres, D., Landa-Torres, I., Gil-Lopez, S., DelSer, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W., 2013 "A survey on applications of the harmony search algorithm", Engineering Applications of Artificial Intelligence, 26(8), 1818-1831
  42. DOI: 10.1016/j.engappai.2013.05.008
  43. Nash, J., 1953, "Two-Person Cooperative Games", Journal of Econometrica, 21(1): 128-140.

11.   Al-Zahrani, M., and Syed, J.L., 2004. "Hydraulic reliability analysis of water distribution system", Journal of the Institute of Engineers, Singapore, 1(1): 76-91

15.   Afshar A., and Miri Khombi S. M., 2012, "Multi Objective Optimization of Sensor Placement in Water Distribution Networks; Dual Use Benefit Approach", Journal of Optimization in Civil Engineering, 5(3): 315-331, (In Persian)

       DOI: 10.2307/1906951