تعیین تغییرات الگوی زمانی و مکانی شاخص تراکم بارندگی در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آب و سازه های هیدرولیکی، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی شیراز، ایران.

2 گروه مهندسی آب، انرژی و محیط زیست، دانشگاه اولو، فنلاند.

چکیده

تعیین تغییرات الگوی زمانی و مکانی بارندگی نقش موثری در مدیریت منابع آب، کنترل مخاطرات طبیعی و طراحی زیرساخت های توسعه ایفا می‌کند. در این پژوهش تغییرات مکانی و زمانی شاخص تراکم بارندگی روزانه (CI) در گستره کشور ایران و با در نظر گرفتن 80 ایستگاه هواشناسی در دوره آماری سی ساله 1987-2016 مورد بررسی قرار گرفت. علاوه بر این روند تغییرات شاخص CI به صورت سالانه نیز توسط آزمون ناپارامتریک من-کندال مورد ارزیابی قرار گرفت. نتایج نشان داد که مقدار این شاخص طی دوره سی ساله و در گستره ایران از 0.57 تا 0.71 متغییر می‌باشد. بیشترین مقادیر CI مربوط به مناطق ساحلی واقع در دریای خزر و خلیج فارس است که نشان دهنده تمرکز بارندگی در روزهای خاصی از سال در این مناطق می‌باشد. همچنین 64 ایستگاه از 80 ایستگاه مورد بررسی در این پژوهش روند رو به افزایش مقدار شاخص تراکم بارندگی روزانه را تجربه کرده‌اند. در ضمن با اعمال آزمون همبستگی اسپیرمن بر روی تمامی ایستگاه ها مشخص شد که همبستگی معنی‌دار و معکوس میان شاخص تراکم بارندگی روزانه، ارتفاع از سطح دریا و عرض جغرافیایی وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of spatio-temporal pattern of daily precipitation concentration index over Iran

نویسندگان [English]

  • sadegh kaboli 1
  • Aliakbar Hekmatzadeh 1
  • Ali Torabihaghighi 2
1 Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran.
2 Water, Energy and Environmental Engineering Research Group, University of Oulu, PO Box 4300, FIN-90014, Finland.
چکیده [English]

Determining the spatio-temporal variations of precipitation patterns plays a key role in water resource management, control of natural hazards, and the design of infrastructures. In this study, the spatial and temporal alterations of daily precipitation concentration index (CI) in Iran territory for the period of 1987 to 2016 was determined, considering 80 metrological stations, Which are well distributed throughout the country. In addition, the trend of annual CI variations was examined using non-parametric Mann-Kendal test. The results indicated that CI varies between 0.57 and 0.71 in Iran, considering the last three decades. The highest CI values were obtained for the Caspian Sea and Persian Gulf coastlines, indicating the concentration of rainfall in limited days in these regions. Moreover, 64 out of 80 stations have experienced an increasing trend in CI values. According to spearman tests, the significant reverse correlation was revealed between CI value and elevation from sea level, and latitude.

کلیدواژه‌ها [English]

  • daily concentration precipitation index
  • precipitation pattern
  • Mann-Kendall test
  • Iran
1)       شیرازی, مسعود؛ محسن ناصری و بنفشه زهرایی.۱۳۹۷. " آشکارسازی و نسبت دهی تغییرات بارش های حدی در ایران".  کنفرانس جامع مدیریت و مهندسی سیلاب، تهران، کارگروه تخصصی سیل، مخاطرات دریایی- آب و فاضلاب و برق وزارت نیرو با همکاری پژوهشکده سوانح طبیعی دوره 6.
2)        Abbaspour, K.C., Faramarzi, M., Ghasemi, S.S. and Yang, H., 2009. Assessing the impact of climate change on water resources in Iran. Water resources research, 45(10).
3)        Alijani, B., O’brien, J. and Yarnal, B., 2008. Spatial analysis of precipitation intensity and concentration in Iran. Theoretical and Applied Climatology, 94(1-2), pp.107-124.
4)        Benhamrouche, A., Boucherf, D., Hamadache, R., Bendahmane, L., Martín Vide, J. and Teixeira Nery, J., 2015. Spatial distribution of the daily precipitation concentration index in Algeria. Natural Hazards And Earth System Sciences, 2015, vol. 15, num. 3, p. 617-625.
5)        Bindoff, N.L., Stott, P.A., AchutaRao, K.M., Allen, M.R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S. and Mokhov, I.I., 2013. Detection and attribution of climate change: from global to regional.
6)        Brown Manrique, O., Díaz Ruiz, R., Gallardo Ballat, Y. and Valero Freyre, J., 2017. Caracterización de precipitaciones diarias en el municipio de Ciego de Ávila, Cuba. Ingeniería Hidráulica y Ambiental, 38(2), pp.44-58.
7)        Change, I.C., 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Manning, M., Chen, Z., Marquis, M., Averyt, KB, Tignor, M., and Miller, HL, Cambridge University Press, Cambridge, UK and New York, NY, USA, 996, p.2007.
8)        Cortesi, N., González-Hidalgo, J.C., Brunetti, M. and Martín Vide, J., 2012. Daily precipitation concentration across Europe 1971-2010. Natural Hazards And Earth System Sciences, 2012, vol. 12, p. 2799-2810.
9)        Deng, S., Chen, T., Yang, N., Qu, L., Li, M. and Chen, D., 2018. Spatial and temporal distribution of rainfall and drought characteristics across the Pearl River basin. Science of the Total Environment, 619, pp.28-41.
10)    Espinoza, P.A.S. and Martín-Vide, J., 2014. Spatial analysis of rainfall daily trends and concentration in Chile. Investigaciones Geográficas, (47), pp.ág-53.
11)    Field, C.B. ed., 2014. Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press.
12)    Gamble, D.W. and Curtis, S., 2008. Caribbean precipitation: review, model and prospect. Progress in Physical Geography, 32(3), pp.265-276.
13)    Kendall, M.G., 1975. Rank correlation methods. 2nd impression. Charles Griffin and Company Ltd. London and High Wycombe.
14)    Khalili, K., Tahoudi, M.N., Mirabbasi, R. and Ahmadi, F., 2016. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic environmental research and risk assessment, 30(4), pp.1205-1221.
15)    Li, X., Jiang, F., Li, L. and Wang, G., 2011. Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. International Journal of Climatology, 31(11), pp.1679-1693.
16)    Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, pp.245-259.
17)    Martin‐Vide, J., 2004. Spatial distribution of a daily precipitation concentration index in peninsular Spain. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(8), pp.959-971.
18)    Monjo, R. and Martin‐Vide, J., 2016. Daily precipitation concentration around the world according to several indices. International Journal of Climatology, 36(11), pp.3828-3838.
19)    Nery, J.T., Carfan, A.C. and Martin-Vide, J., 2017. Analysis of Rain Variability Using the Daily and Monthly Concentration Indexes in Southeastern Brazil. Atmos. Clim. Sci, 7, pp.176-190.
20)    Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K.J., Yang, J.E., Ni, J., Miao, C., Chattopadhyay, N. and Sadeghi, S.H., 2017. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific reports, 7(1), p.4175.
21)    Piccarreta, M., Capolongo, D. and Boenzi, F., 2004. Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a southern Italy context. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(7), pp.907-922.
22)    Pinheiro, G.M. and Vide, J.M., 2017. CONCENTRAÇÃO DIÁRIA DA PRECIPITAÇÃO NA BACIA DO ALTO IGUAÇU, PARANÁ, BRASIL-CONCENTRATION INDEX OF RAINFALL IN THE UPPER BASIN IGUAÇU, PARANÁ, BRAZIL. Raega-O Espaço Geográfico em Análise, 39, pp.266-279.
23)    Royé, D. and Martin-Vide, J., 2017. Concentration of daily precipitation in the contiguous United States. Atmospheric research, 196, pp.237-247.
24)    Saghebian, S.M., Sattari, M.T., Mirabbasi, R. and Pal, M., 2014. Ground water quality classification by decision tree method in Ardebil region, Iran. Arabian journal of geosciences, 7(11), pp.4767-4777.
25)    Salas, J.D., 1980. Applied modeling of hydrologic time series. Water Resources Publication.
26)    Sangüesa, C., Pizarro, R., Ibañez, A., Pino, J., Rivera, D., García-Chevesich, P. and Ingram, B., 2018. Spatial and temporal analysis of rainfall concentration using the Gini index and PCI. Water, 10(2), p.112.
27)    Sarricolea, P., Meseguer-Ruiz, Ó., Serrano-Notivoli, R., Soto, M.V. and Martin-Vide, J., 2019. Trends of daily precipitation concentration in Central-Southern Chile. Atmospheric research, 215, pp.85-98.
28)    Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), pp.1379-1389.
29)    Serrano‐Notivoli, R., Martín‐Vide, J., Saz, M.A., Longares, L.A., Beguería, S., Sarricolea, P., Meseguer‐Ruiz, O. and De Luis, M., 2018. Spatio‐temporal variability of daily precipitation concentration in Spain based on a high‐resolution gridded data set. International Journal of Climatology, 38, pp.e518-e530.
30)    Shi, P., Wu, M., Qu, S., Jiang, P., Qiao, X., Chen, X., Zhou, M. and Zhang, Z., 2015. Spatial distribution and temporal trends in precipitation concentration indices for the Southwest China. Water resources management, 29(11), pp.3941-3955.
31)    Shi, W., Yu, X., Liao, W., Wang, Y. and Jia, B., 2013. Spatial and temporal variability of daily precipitation concentration in the Lancang River basin, China. Journal of hydrology, 495, pp.197-207.
32)    Suhaila, J. and Jemain, A.A., 2012. Spatial analysis of daily rainfall intensity and concentration index in Peninsular Malaysia. Theoretical and Applied Climatology, 108(1-2), pp.235-245.
33)    Von Storch, H., 1999. Misuses of statistical analysis in climate research. In Analysis of climate variability (pp. 11-26). Springer, Berlin, Heidelberg.
34)    Vyshkvarkova, E., Voskresenskaya, E. and Martin-Vide, J., 2018. Spatial distribution of the daily precipitation concentration index in Southern Russia. Atmospheric research, 203, pp.36-43.
35)    Yang, P., Xia, J., Zhang, Y. and Hong, S., 2017. Temporal and spatial variations of precipitation in Northwest China during 1960–2013. Atmospheric Research, 183, pp.283-295.
36)    Yeşilırmak, E. and Atatanır, L., 2016. Spatiotemporal variability of precipitation concentration in western Turkey. Natural Hazards, 81(1), pp.687-704.
37)    Yue, S. and Hashino, M., 2003. Temperature trends in Japan: 1900–1996. Theoretical and Applied Climatology, 75(1-2), pp.15-27.
38)    Zhai, L. and Feng, Q., 2009. Spatial and temporal pattern of precipitation and drought in Gansu Province, Northwest China. Natural hazards, 49(1), p.1.
39)    Zubieta, R. and Saavedra, M., 2009. Spatial Distribution of a Daily Precipitation Concentration Index in Central Andes of Peru: Mantaro River Valley. TECNIA, 19, pp.13-22.
40)    Zubieta, R., Saavedra, M., Silva, Y. and Giráldez, L., 2017. Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: central Andes of Peru. Stochastic Environmental Research and Risk Assessment, 31(6), pp.1305-1318.