بررسی آزمایشگاهی و تحلیل دینامیکی فراکتال و چند فراکتال الگوهای تکامل جریان چگال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 گروه مهندسی عمران، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

جریان چگال در اثر اختلاف دانسیته هر چند کم با سیال محیطی به وجود می آید. این جریان ها نوعی از جریان های دوفازی به حساب می آیند. این جریان ها ماهیت غیر خطی دارند که پیچیده و حساس نسبت به شرایط اولیه می باشند. هندسه فراکتال به عنوان ابزاری قدرتمند جهت بررسی پدیده های پیچیده طبیعی به کار گرفته می شود. هدف از این مقاله بررسی جامعی بر روی ویژگیهای فراکتال و چند فراکتال جریان چگال می باشد و همچنین روابط معناداری بین عدد ریچاردسون و شدت اختلاط جریان چگال با استفاده از تئوری فراکتال برقرار نمود. در این پژوهش، آزمایشات در 28 حالت مختلف با تغییر در شیب کف، چگالی و دبی ورودی جریان چگال صورت گرفته است. از کد های توسعه داده شده در محیط MATLAB برای محاسبه شاخص های چند فراکتالی بعد تعمیم یافته D(q)، طیف تکینگی f(α)، زاویه تکینگی α، ضریب مقیاسی T(q) و بعد فراکتال Df استفاده شد. نتایج و بررسی های مختلف نشان داد با افزایش شیب کف فلوم، تقریبا بعد فراکتال کاهش می یابد. همچنین با افزایش غلظت و دبی جریان چگال، بعد فراکتال افزایش می یابد. هر چه عدد ریچاردسون افزایش یابد، نمودار ضریب مقیاسی آن الگوی خطی تری از خود نشان می دهد. همچنین نرخ تغییرات بعد فراکتال نسبت به q در این آزمایشات ملایم تر بوده و زاویه تکینگی در این آزمایشات مقادیر بیشتری اتخاذ کرده اند و دامنه کمتری دارند. با تحلیل فراکتال، ارتباط معناداری با ضریب تعیین 0.92 بین عدد ریچاردسون و شدت اختلاط برقرار گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigation and Dynamic Fractal and Multi-fractal Analysis of the Density Current Patterns

نویسندگان [English]

  • mohammad hosseini 1
  • mohammad hadi fattahi 2
  • saied eslamian 3
1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Department of Civil Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
3 Department of Water Engineering, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

Density current is caused by a slight density difference with the environmental fluid. These currents are of two-phase current type. These currents are non-linear in nature, which are complex and sensitive to initial conditions. Fractal geometry is used as a powerful tool to investigate geophysical phenomena including density current and many complex natural phenomena. This study aimed to conduct a comprehensive study on the fractal and multi-fractal properties of density current and established a significant relation between the Richardson number evolution and the entrainment of ratio density current through fractal analysis. For this purpose, three experimental models in 28 different states were performed by changing the bed slope, density and inlet discharge. The developed codes in MATLAB were used to calculate the multi-fractal generalized dimension indices D(q), singularity spectrum f(α), singularity angle α, the scaling exponent T(q) and fractal dimension Df. The results and various investigations indicated that the fractal dimension decreased a little with the increase of flume bed slope. Further, the fractal dimension increases with increasing the concentration and current discharge. As the Richardson number increases, the scaling exponent has a linear pattern. Furthermore, the fractal dimension changes are monotonic than q in these experiments, and the singularity angles are larger with less range. A significant relationship with 92% coefficient was made between Richardson number and entrainment ratio by fractal analysis.

کلیدواژه‌ها [English]

  • Fractal geometry
  • Richardson number
  • Entrainment ratio
  • Singularity spectrum
  • Scaling exponent
1)        Altinakar, M. S., Graf, W. H., and Hopfinger, E. J. (1990). "Weakly Depositing Tubidity Current on Small Slopes", Journal of Hydraulic research, Vol. 28, No. 1, pp. 55-80. DOI: 10.1080/ 00221689009499147.
2)        Ashida, K., Egashira, S. (1975).” Basic study on turbidity currents”, Proceedings of Japan Society of Civil Engineers Tokyo, Vol.237, No.1, pp.37-50.
3)        Bonnet E., Bour O., Odling N.E., Davy P., Main I.G., Cowie P. and Berkowitz, B. (2001). “Scaling of fracture systems in geological media”, Reviews of Geophysics, Vol. 39, No. 3, pp. 347-383. DOI: 10.1029/1999RG000074.
4)        Carpinteri, A., Lacidogna, G. and Niccolini, G. (2009). “Fractal analysis of damage detected in concrete structural elements under loading”, Chaos Solitons and Fractals, Vol. 42, No. 4, pp. 2047–2056. DOI: 10.1016/ j.chaos. 2009. 03.165.
5)        Chhabra, A., Meneveau, C., Jensen, R. and Sreenivasan, K. (1989). “Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence”, Physical Review A, Vol. 40, No. 9, pp. 5284–5294. DOI: 10.1103/ PhysRevA.40.5284.
6)        Eke, A., Herm´an, P., Bassingthwaighte, J. B., Raymond, G. M., Percival, D. B., Cannon, M., Balla, I. and Ikr´enyi, C. (2000). “Physiological time series: distinguishing fractal noises from motions”, Pfl¨ugers Arch.—Eur. J. Physiol, Vol. 439, No. 1, pp. 403-415. DOI: 10.1007/ s004249900135.
7)        Elmizadeh, H., Mahpeikar, O and Saadatmand, M. (2014). ”Fractal theory in geomorphology River: A Case Study Zarineh river”, Quantitative geomorphology research, No. 2 (in Persian).
8)        Fattahi M.H., Talebzadeh Z. (2017). “The relationship between watershed compactness coefficient and the fractal characteristics”, Iran Water Resources Research, Vol. 13, No. 1, pp. 191-203 (in Persian).
9)        Fattahi, M. H., Talebbeydokhti, N., Rakhshandehroo, G. R., Shamsai, A. and Nikooee, E. (2010). “The robust fractal nalysis of the time series- concerning signal class and data length”, Fractals, Vol. 9, No. 1, pp. 1-21. DOI: 10.1142/S0218348X11005099.
10)     Fukushima, Y., Parker, G. and Pantin, H. M. (1985). “Prediction of ignitive turbidity currents in Scripps submarine canyon”. Marine Geology, Vol. 67, No. 1, pp. 55-81, DOI: 10.1016/0025-3227(85)90148-3.
11)     Ghomeshi, M., Varjavand, P. and Dalir, A.H. (2015).” Experimental observation of saline underflows and turbidity currents, flowing over rough beds”, Canadian Journal of Civil Engineering, Vol. 42, No. 11, pp. 834-844, DOI: 10.1139/cjce-2014-0537.
12)     Graf, W. H. (1983). “The behavior of a silt-laden current”, International Water Power & Dam Construction. Vol. 35, No. 9, pp. 33-38.
13)     Imran, J., Khan, S. M., Pirmez, C. and Parker, G. (2017). “Froude scaling limitations in modeling of turbidity currents”, Environmental Fluid Mechanics, Vol. 17, No. 1, pp. 159–186. DOI: 10.1007/s10652-016-9488-6.
14)     Kamyab, S and Fattahi, M.H. (2018). “Compliance of the Watershed Geo-Morphological Indices with the Multi fractal Properties of the River Network”, Iran-Water Resources Research, Vol. 14, No. 5, pp. 311-326.(in Persian).
15)     Kashefipour, S., Daryaee, M. and Ghomeshi, M. (2017).”Effect of bed roughness on velocity profile and water entrainment in a sedimentary density current”, Canadian Journal of Civil Engineering, Vol. 45, No. 1, pp. 9-17, DOI: 10.1139/cjce-2016-0490.
16)     Khatibi, R., Sivakumar, B., Ghorbani, M.A., Kisi, O., Kocak, K and Farsadizadeh, D. (2012),” Investigating chaos in river stage and discharge time series”, Journal of Hydrology, Vol. 414, No. 1, pp. 108–117. DOI: 10.1016/j.jhydrol.2011.10.026.
17)     Parker, G., Garcia, M. and Fukushima, Y. (1987). “Experiments on turbidity currents over an erodible bed.” Journal of Hydraulic Research, Vol. 25, No. 1, pp. 123-147. DOI: 10.1080/ 00221688709499292
18)     Rakhshandehroo, G.R and Amiri, S.M. (2012) “Evaluating fractal behavior in groundwater level fluctuation”, Journal of Hydrology, Vol. 464, No. 1, pp. 550–556. DOI: 10.1016/j.jhydrol.2012.07.030.
19)     Sivakumar,B. ,Puente, C and Maskey, M. (2018). ” Studying the Complexity of Rainfall Within California Via a Fractal Geometric Method”. Hydrological Sciences Journal, Vol. 45, No. 5, pp. 727-738. DOI: 10.1080/ 02626660009492373.
20)     Tanna, H.J and Pathak, K.N. (2013). “Multi-fractality due to long-range correlation in the L-band ionospheric scintillation S4 index time series”, Astrophysics and Space Science, Vol. 350, No. 1, pp. 47-56. DOI 10.1007/s10509-013-1742-5.
21)     Turner, J. S.  (1980). Buoyancy Effects in Fluids, Cambridge, UK: Cambridge University Press, pp. 382-387.
22)     Wang, Z., Xia, J., Li, T., Deng, S. and Zhang, J. (2016). “An integrated model coupling open-channel flow, turbidity current and flow exchanges between main river and tributaries in Xiaolangdi Reservoir, China”, Journal of Hydrology. Vol. 543, No. 2, pp. 548–56. DOI: 10.1016/ j. jhydrol. 2016.10.023.
23)     Wei, X and Li, X. (2016). “Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China”, Journal of Hydrology, Vol. 266. No. 1, pp. 133–145. DOI: 10.1016/j.geomorph. 2016.05.003.
24)     Yokokawa, M. Shozakai, D. Higuchi, H. Hughes Clarke, J. E. and Izumi, N. (2015). “Experimental study on cyclic steps formed by surge-type turbidity currents”, American Geophysical Union, Fall Metting