شبیه‌سازی جریان رودخانه حوضه آبریز سملقان با استفاده از مدل هیدرولوژیکی SWAT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد

3 دانشیار گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد

چکیده

توزیع ناهمگون زمانی و مکانی آب شیرین و رشد سریع جمعیت در دهه‏های اخیر، سبب بروز مشکلاتی در تأمین منابع آب مورد نیاز مصارف مختلف شده است. از این‌رو مدل‌های ریاضی جدیدی به‌منظور مطالعه فرآیندهای پیچیده هیدرولوژیکی توسعه یافته اند. در این پژوهش، مدل SWAT در حوضه آبریز سملقان با مساحت 1148 کیلومترمربع برای شبیه‌سازی جریان مورد استفاده قرار گرفت. در فرآیند مدل‌سازی، حوضه به 21 زیرحوضه و 402 واحد هیدرولوژیک تقسیم گردید. به دلیل محدودیت دسترسی به داده‌های هیدرولوژیک کافی، مدل‌سازی حوضه‌های آبخیز دارای عدم قطعیت‌هایی می‌باشد. بدین منظور واسنجی و اعتبار سنجی مدل با استفاده از الگوریتمSUFI2 به‌ترتیب برای سال‌های 1995تا 2012 و2012 تا 2014 انجام شد. بر اساس نتایج آنالیز حساسیت، پارامترهای RCHRG_DP (مقدار نفوذ به آبخوان عمیق)، GWQMN (مقدار آب در آبخوان کم‌عمق)، ALPHA_BF (ضریب عکس العمل آب زیرزمینی)، SOL_AWC (ظرفیت آب قابل دسترس خاک) و CN (شماره منحنی SCS ) بیشترین تاثیر را داشتند. نتایج نشان داد که مقدار شاخص نش- ساتکلیف و ضریب R2 در محدوده 65/0 تا 80/0 برای دوره واسنجی و 40/0 تا 65/0 در دوره اعتبار سنجی می‌باشد. از مجموع آب ورودی به حوضه، 87 درصد صرف تبخیر و تعرق، 2/3 درصد رواناب سطحی، 0/3 درصد نفوذ و مابقی مرتبط با تغییرات و ذخیره رطوبت در خاک می‌باشد. از آنجا که تا کنون برآوردی از مولفه های بیلان آب در این حوضه از انجام نشده است، این تحقیق میتواند اطلاعات مفیدی را در مورد بیلان آبی حوضه فراهم نموده و به برنامه ریزی دقیق‌تر منابع آب، در این حوضه کمک نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Stream Flow in Samalqan Watershed Using SWAT Hydrological Model

نویسندگان [English]

  • shima Nasiri 1
  • Hossein Ansari 2
  • Ali Naghi Ziaei 3
1 Department of Water science and Engineering, College of Agriculture, Ferdowsi University of Mashhad (FUM), Iran
2 Department of Water science and Engineering, College of Agriculture, Ferdowsi University of Mashhad, Iran
3 Department of Water science and Engineering, College of Agriculture, Ferdowsi University of Mashhad,Iran
چکیده [English]

The heterogeneous temporal and spatial distribution of fresh water and rapid population growth in recent decades have led to problems in supplying required water resources for various uses. Therefore, new mathematical models have been developed to study the complex hydrological processes. In this study, SWAT model in Samalqan catchment with area of 1148 km2 was used to simulate the flow. In the modeling process, the basin was divided into 21 sub-basins and 402 hydrological units. Modeling of watersheds has uncertainties due to limited access to enough hydrological data. For this purpose, model calibration and validation were performed using SUFI2 algorithm for 1995 to 2012 and 2012 to 2014, respectively. Based on the sensitivity analysis results, the parameters RCHRG_DP (value of penetration into the deep aquifer), GWQMN (amount of water in the shallow aquifer to produce the base stream), ALPHA_BF (groundwater reaction coefficient), SOL_AWC (soil available water capacity) and CN (SCS curve number) had the most effect. The results showed that the values of Nash-Sutcliffe index and R2 coefficient were 0.65 to 0.80 for calibration period and 0.40 to 0.65 for validation period. Out of the total inflow into the basin, 87% is spent on evapotranspiration, 3.2% for surface runoff, 3% for infiltration and the rest is related to changes and moisture storage in soil. Since no estimation of water balance components in this basin has been done so far, this research can provide useful information about the water balance of the basin and help to plan water resources more accurately.

کلیدواژه‌ها [English]

  • SUFI2
  • Sensitivity analysis
  • Calibration
  • run off
  • Water balance
1)       ابراهیمی پ، سلیمی ج، محسنی م، 1397. واسنجی و اعتبارسنجی مدل SWAT در شبیه سازی رواناب. مطالعه موردی حوزه آبخیز نکا. مجله مهندسی و مدیریت آبخیز. 266-279: (10)
2)       حاجی حسینی ح.ر، حاجی حسینی م.ر، مرید س، دلاور م،1394. مدلسازی هیدرولوژیکی بالادست حوضه فرامرزی هیرمند با استفاده از مدل SWAT. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم اب و خاک. 255-267: (72)
3)       ضازاده م س، بختیاری ب، عباسپورک، احمدی م،1397. شبیه سازی رواناب رسوب و تبخیرتعرق با استفاده از سناریوهای مدیریتی برای کاهش بار رسوب با استفاده از مدل SWAT. نشریه علوم و مهندسی آبخیزداری ایران : 41-50: (40)12
4)       زارع گاریزی الف، طالبی ع،1395. شبیه سازی بیلان آب حوضه آبخیز قره سو استان گلستان با استفاده از مدل SWAT. مجله مهندسی منابع آب.37-50:(9)
5)       فیعی م، انصاری ح، داوری ک، قهرمان ب، 1392. واسنجی و تحلیل عدم قطعیت یک مدل نیمه­توزیعی در یک منطقه نیمه­خشک، مطالعه موردی حوضه آبریز نیشابور. مجله علوم و فنون کشاورزی و منابع طبیعی. علوم آب و خاک 137-148 : (64)17
6)       ویان ا، بهرامی م، روحانی ح،1393 . ارزیابی کارایی مدل SWAT در تخمین رواناب سطحی حوزه آبخیز کچیک استان گلستان. نشریه پژوهش های آبخیزداری22-32: (103)27
7)       لشن م، کاویان ا، روحانی ح، ااسمعلی  ا، 1394. شبیه‌سازی رواناب و بار رسوب حوزه آبخیز رودخانه هراز مازندران با بهره‌گیری از الگوی SWAT. مجله تحقیقات خاک و آب ایران293-303: (46)
 
8)        Abbaspour K.C. 2009. User Manual for SWAT-CUP2, SWAT Calibration and Uncertainty Analysis Programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland. 95 pp.
9)        Abbaspour K.C. Rouholahnejad, E, Vaghefi, S, Srinivasan R, Yang H, and Kløve B. 2015. continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524: 733-752.
10)     Abbaspour, K.C, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, and Zobrist J. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333: 413– 430.
11)     Alansi, A.W., Amin, M.S.M., Abdul Halim, G., Shafri, H.Z.M. and Aimrun, W., 2009. Validation of SWAT model for stream flow simulation and forecasting in Upper Bernam humid tropical river basin, Malaysia. Hydrology and Earth System Sciences Discussions, 6(6), pp.7581-7609.
12)     Arnold J.G. Moriasi D.N. Gassman, P.W. Abbaspour K.C. White M.J. Srinivasan
R., Santhi, C., van Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N.,
Jha, M.K, 2012. SWAT: model use, calibration, and validation. Trans. ASABE 55
(4), 1491–1508.
13)     Awan, U.K. and Ismaeel, A., 2014. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. Journal of Hydrology, 519, pp.1368-1382
14)     Borah D.K, Arnold J.G, Bera M, Krug C.E, and Liang, X.Z. 2007. Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Transaction of the ASCE, 6 (605): 605-617.
15)     Faramarzi, M, Abbaspour K.C. Schulin R, Yang H, 2009. Modelling blue and green water resources availability in Iran. Hydrol. Process. 23, 486–501.
16)     Fontaine T.A. Cruickshank T.S. Arnold J.G. and Hotchkiss R.H. 2002. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology, 262 (1-4): 209-223.
17)     Jin. G, Shimizu Y, Onodera S, Saito M and Matsumori, K. 2015. Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan. Proceeding of the International Association of Hydrological Science. 371. P. 143.
18)     affas K, Hrissanthou V, Sevatas S,2018. Modelling hydro morphological processes in a mountainous basin using a composite mathematical model and Arc 162:108-129Catena.SWAT.
19)     Kumar Himanshu S, Pandey A, Shrestha P. 2017. Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environ Earth Sei, 76:3.
20)     14-McCallum, A.M., Andersen, M.S., Rau, G.C., Larsen, J.R. and Acworth, R.I., 2014. Riveraquifer interactions in a semiarid environment investigated using point and reach measurements. Water Resources Research, 50(4), pp.2815-2829
21)     Moriasi, D.N, Arnold J.G, Van Liew M.W, Bingner R.L, Harmel R.D, and Veith, T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3): 885−900
22)     Munoz-Villers L.E, McDonnell J.J. 2013. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 17: 3543-3560
23)     Neitsch, S.L, Arnold J.G.  Kiniry,J.R. Williams J.R. 2005. Soil and water assessment tool, theoretical documentation Blackland Research Center, Texas Agricultural Experiment station and USDA Agricultural Research Service. Available online, www.brc.tamus.edu
24)     Rafiei Emam A, Kappas M, Akhavan S, Hosseini S. Z. Abbaspour K. C.  2015. Eatimation of groundwater recharge and its relation to; and degration: case study of a semi-arid river basin in Iran. Environmental Earth Sciences, 74: 6791-6803.
25)     Scheffler R, Neill C, Krusche A.V. Elsenbeer H. 2011. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric. Ecosyst. Environ. 144: 281-289.
27)     Sharpley A.N. Williams J.R. eds. 1990. EPIC-Erosion Productivity Impact Calculator, 1. model documentation. U.S. Department of Agriculture, Agricultural Research Service, Tech. Bull. 1768.
28)      Van Liew M.W, Arnold J.G.  Garbrecht J.D.2003. Hydrologic simulation on agricultural watersheds: choosing between two models. Transaction of the AEAE. 46(6): 1539-1551.
29)     Wang G, Yang H, Wang L, Xu Z, Xue B. 2014. Using the SWAT model to access impacts on land use changes on runoff generation in headwaters. Hydrological process. 28(3). pp.1032-1042.
30)     Winchell M, Srinivasan R, Di luzio M,Arnold. J. 2013. ARCSWAT INTERFACE FOR SWAT2012, USER’S GUIDE. Blackland Research Center, Texas Agricultural Experiment station and USDA Agricultural Research Service. Available online,      www.tamus.edu
31)     Zuo, D, Xu Z, Yao W, Jin, S, Xiao P, Ran D. 2016. Assessing the effects of changes in landuse and climate on runoff and sediment yields from a watershed in the Loess Plateau of China.
Science of the Total Environment, 544: 238-250.