1) Asgharipri, S. A. And Mohagheghin, S. M. 2015. Numerical Investigation of the Effect of Creating Protective Pits on the Bed on Concentrated Flow Discharge. Journal of Water Resources Engineering. 7 (23): 1-12 (In Persian).
2) Barahmand, n. And Mousavi, S. R. 2014. Comparison of different turbulence simulations in order to properly simulate dense currents in the vicinity of the bed slope reduction. Journal of Water Resources Engineering, 6 (16): 79-93 (In Persian).
3) Hosseini, A. And Abdiipour, A. 2011. Application of Flow-3D software in modeling hydrodynamic structure of continuous muddy flow streams entering dams. 9th Iranian Hydraulic Conference. Tarbiat Modares University (In Persian).
4) Haqqabi, A. H., Abbaspour, B., Maleki, AS. And Torabi Poodeh, h. 2016. Numerical Simulation of Flow Pattern on Triangular Overflows and Comparison with Linear Overflow Using Flow-3D Software. Journal of Water Resources Engineering. 9 (29): 125-137 (In Persian).
5) Torabi Poudeh, H., Fathi Moghadam, M., M. Ghomeshi and M. Shafai-Bajestan, 2007. Head Velocity and Entrainment of Density Current in an Expansion Reach, Iranian Water Resources Research. Volume 3, No. 1, 56-67 (In Persian).
6) Tabatabai, S. M., Khazimehnejad, H., Akbarpour, A. And Varjavand, p. 2017. Experimental Investigation of the Effect of Permeable Barrier Arrangement and Bed Slope on Concentrated Hydraulic Characteristics. Dam and Hydroelectric Power Plant. 4 year. No 13 (In Persian).
7) Sarvinejad, B., Ghomashi, M. And Bina, M. 2013. Investigation of concentration mixing intensity in converged sections and comparison with constant and diverging sections. Irrigation Science and Engineering (Journal of Agricultural Science). Vol. 36. No. 3 (In Persian) .
8) Salajeghah, A., Ghaini Hesarouieh, M., 2016. Numerical modeling of inlet flow to drinking water tanks. 15th Iranian Hydraulic Conference, Faculty of Engineering, Imam Khomeini International University, Qazvin (In Persian).
9) Adeli, A., Barani, Gh. And Zineamat Kermani, M. 2013. Investigation of barrier current condensation control in dams using Fluent software. 5th Iranian Water Resources Management Conference. Shahid Beheshti University (In Persian).
10) Firoozabad, B. Bagherpour, A. And Afshin, H., 2008. Experimental study of turbulence parameters in brine condensate flow. 11th Fluid Dynamics Conference. Khaje Nasir al-Din Tusi University of Technology, Faculty of Mechanical Engineering (In Persian).
11) Firoozabad, B. Bagherpour, A. And Afshin, H., 2008. Experimental study of turbulence parameters in brine condensate flow. 11th Fluid Dynamics Conference. Khaje Nasir al-Din Tusi University of Technology, Faculty of Mechanical Engineering (In Persian).
12) Keshtkar, Sh., Ayubzadeh, SA and Ghodsian, M.Sc. 2017. Experimental study of the effect of barrier height on inhibition of turbulent flow velocity under abrupt change of reservoir bed slope. Journal of Water Resources Engineering. 10 (32): 55-70 (In Persian).
13) . Marousi, M., Qomashi, M. And Basharvard, h. 2009. Barrier deposition control in dams reservoirs. Eighth International Seminar on River Engineering. Shahid Chamran University. Ahwaz (In Persian).
14) Mansouri Hafshajani, M., Ghomashi, M. Shafi'i Bejestan, m. 2016. Estimation of mixing intensity in fluid moving around in opposite direction with concentrated flow motion. 6th Iranian National Water Resources Management Conference. The University of Kordestan (In Persian).
15) Naji Abhari, M., Iranshahi, M., Ghodsian, M. And Firoozabad, b. 2015. Investigation of laboratory observations of the effect of triangular barrier on reservoir floor on muddy stream structure. Journal of Hydraulic. Volume 10. No. 4 (In Persian).
16) 17- Waghefi, M., Akbari, M. And Fayoz, A. 2015. In vitro comparison of three-dimensional flow velocity components around a T-shaped borehole located at 90 degree arc with rigid bed with Flow-3D software results. Journal of Water Resources Engineering. 8 (25): 31-46. (In Persian)
17) .Anderson, J.D .1995.Computational Fluid Dynamics: The Basics with Applications. New York.
18) De Cesare, G., D.oehy,C., and J.Schleiss, A. 2008. Experiments on turbidity currents influenced by solid and permeable obstacles and water jet scsreens.
19) Durbin, P.A. and Pettersson Reif, B.A. 2010. Statistical Theory and Modeling for Turbulent. Norway.
20) Flow-3D Help. Version 11.1.
21) Lubbersen, Y.S., Fasaei, F., kroon.P., Boom. R.M. and Schutyser. M.A.I. 2015. Particle suspension concentration with sparse obstacle arrays in a flow channel.Chemical Engineering andProcessing: Process Intensification.
22) Marosi, M., Ghomeshi, M. and Sarkardeh, H. 2015. Sedimentation control in the reservoirs by using an obstacle. Indian Academy of Sciences.Vol. 40, Part 4.June. pp. 1373–1383.
23) Varjavand, P., Ghomashi, M.,Hosseinzadeh Dalir, A., Farsadizadeh, B. and Docheshmeh Gorgij, A. 2015. Experimental observation of saline underflows and turbidity currents, flowing over rough beds. Journal Of Civil Engineering. August.
24) Yaghoubi, S., Afshin, H., Firoozabadi, B. and Farizan, A. 2017. Experimental Investigation of the Effect of Inlet Concentrationon the Behavior of Turbidity Currents in the Presence of TwoConsecutive Obstacles. J. Waterway. Port. Coastal. Ocean Eng.V.143.