تخمین رواناب سطحی دامنه های حوضه های آبخیز بر اساس روش موج جنبشی و رواناب زیر سطحی بر اساس حل معادلات ریچاردز مدل Hydrus

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی عمران دانشگاه آزاد اسلامی واحد استهبان

2 استادیار، گروه کشاورزی، دانشگاه پیام نور، ایران

3 استادیار گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد استهبان، فارس

چکیده

تخمین رواناب سطحی و زیرسطحی به‌عنوان اجزاء رواناب مستقیم حوضه جهت طراحی سازه­های هیدرولیکی بسیار حائز اهمیت است. در بسیاری از حوضه‌ها با نفوذپذیری خاک تراوا و پوشش گیاهی مناسب، جریان زیرسطحی از اهمیت بالایی در ایجاد رواناب برخوردار است. در این تحقیق از سازوکار هورتونی برای تخمین رواناب سطحی صفحات حوضه با کاربرد روش موج جنبشی استفاده گردید. برای پیش‌بینی جریان زیرسطحی دامنه‌های آبخیز از حل معادله ریچاردز در محیط غیراشباع توسط نرم‌افزار Hydrus استفاده شد و آب نگار رواناب زیرسطحی دامنه‌ها محاسبه گردید. برای صحت سنجی از داده‌های آزمایشگاهی دستگاه باران ساز به طول 2 متر، عرض 1 و عمق 0.35 متر با خاک بافت ماسه­ای متوسط استفاده شد. آزمایش‌ها تحت سه زاویه شیب 1/0، 3،6 و 9 درجه و تحت بارش‌های 31.73،47.6 و 63.46 میلی‌متر بر ساعت انجام گرفت. جریان سطحی و زیرسطحی دستگاه به ترتیب با نتایج روش موج جنبشی و نتایج مدل Hydrus مقایسه گردید. متوسط خطای پیش‌بینی اوج رواناب سطحی با کاربرد روش موج موجی در 12رویداد محاسبه‌ شده 3.5 درصد و متوسط خطای پیش‌بینی اوج ر رواناب زیرسطحی در 9 رویداد 10 درصد بوده است که مقادیر مناسبی هستند. نتایج مدل Hydrus جهت تخمین رواناب دامنه‌های افقی با شیب صفر دارای 40 درصد خطا در محاسبه اوج رواناب زیرسطحی بود که مناسب نبوده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Surface Runoff Prediction of Catchments Hillslopes Based on Kinematic Wave Method and Subsurface Runoff Based on Solving Richard Equations in Hydrus Model

نویسندگان [English]

  • TOURAJ SABZEVARI 1
  • Mehdi karami moghadam 2
  • Zahra Ghadampour 3
1 Department of Civil Engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
2 Department of Agriculture, Payame Noor University, Iran
3 Department of civil engineering, Estahban Branch, Azad University, Estahban, Iran
چکیده [English]

Prediction of surface and subsurface runoff as elements of direct runoff of catchment is very important for designing hydraulic structures. In many of the catchments with high permeability and suitable vegetation, subsurface flow is also highly important. In this research, Hortonian mechanism has been used for predicting surface runoff of catchment overland using Kinematic wave method. For prediction of subsurface runoff of catchments hillslopes, Richard equation in an unsaturated zone by means of Hydrus software was used. Runoff hydrograph of subsurface runoff was calculated. For verification, experimental data from rainfall simulator with length of 2 meters, width of 1 meter and depth of 0.35 with loamy sand was used. The experiments were conducted under three angles of 0.1, 6.3 and 9 degrees and under rainfall intensity of 31.73, 47.6 and 63.46 millimeter per hour (mm / h), respectively. The subsurface and surface flow of the system were compared with the results of the kinematic wave in the surface flow and the results of the Hydrus model in the subsurface flow. The peak runoff mean error predicted by the kinematic wave method in the 12 events calculated is 3.5% and the mean prediction error of the subsurface runoff peak in 9 events is 10%, which is an acceptable value. The results of the Hydrus model for predicting the slope of zero tilt angle had 40% error in calculating the subsurface runoff peak that has not been acceptable.

کلیدواژه‌ها [English]

  • Surface runoff
  • Subsurface runoff
  • Hydrus
  • Kinematic wave
1)       Abrantes, J. R. C. B., J. L. M. P. de Lima, and A. A. A. Montenegro. 2015. “Performance of kinematic modelling of surface runoff for intermittent rainfall on soils covered with mulch.” Revista Brasileira de Engenharia Agrícola e Ambiental 19 (2): 166–172. https://doi.org/10.1590/1807 -1929/agriambi.v19n2p166-172.
2)       Akan, A. O., & Houghtalen, R. J. (2003). Urban hydrology, hydraulics, and stormwater quality: engineering applications and computer modeling. John Wiley & Sons.
3)       Aryal S. K, O’Loughlin E. M.,  Mein R. G (2005) A similarity approach to determine response times to steady-state saturation in landscapes. Advances in Water Resources, 28(2), 99-115.
4)       .Baiamonte, G., & Singh, V. P. (2015). Analytical solution of kinematic wave time of concentration for overland flow under Green-Ampt infiltration. Journal of Hydrologic Engineering, 21(3), 04015072.
5)       Beven K. J (2011). Rainfall-runoff modelling: the primer. John Wiley & Sons.
6)       Chow V.T, Maidment D.R, Mays L.W (1988). Applied Hydrology. McGrow-Hill,New York.
7)       Essig E. T, Corradini C, Morbidelli R,  Govindaraju R. S (2009). Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. Journal of hydrology, 374(1), 30-42.
8)       Genuchten M.Th (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892–898.
9)       Govindaraju RS, Kavvas ML, Jones SE. Approximate analytical solutions for overland flows. Water Resour Res 1990;26(11): 2903–12.
10)   Govindaraju R. S,  Kavvas M. L (1991) Dynamics of moving boundary overland flows over infiltrating surfaces at hillslopes. Water Resources Research, 27(8), 1885-1898.
11)   Hjelmfelt Jr AT. (1981) Overland flow from time-distribution rainfall. J Hydraul Div—ASCE;107(2):227–38.
12)   Horton R.E. (1933)  The role of infiltration in the hydrologic cycle, Trans. AGU, 14th Ann. Mtg, 446-460.
13)   Horton R.E (1938) The interpretation ad application of runoff plane experiments with reference to soil erosion problems, Soil Sci. Soc. Am. Proc., 1, 401-437.
14)   Kollet S.J, Maxwell R.M, (2006) Integrated surface–groundwater flow modelling: a free-surface overland flow boundary condition in a parallel groundwater model. Adv. Water Resour. 29, 945–958.
15)   Mein R.G, Larson C.L (1973) Modeling infiltration during a steady rain. Water Resour. Res. 9, 384–394.
16)   Morbidelli R, Saltalippi C, Flammini A, Cifrodelli M, Corradini C, Govindaraju R. S (2015) Infiltration on sloping surfaces: Laboratory experimental evidence and implications for infiltration modeling. Journal of Hydrology, 523, 79-85.
17)   Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513–522.
18)   Parlange JY, Rose CW, Sander G.(1981) Kinematic flow approximation of runoff on a plane: an exact analytical solution. J Hydrol;52:171–6.
19)   Republic Simunek J, M.Th  van Genuchten,  M. Šejna (2008). Development and applications of the HYDRUS and STANMOD soft ware packages and related codes. Vadose Zone J. 7:587–600.
20)   Sabzevari T, Talebi A, Ardakanian R,  Shamsai A (2010) A steady-state saturation model to determine the subsurface travel time (STT) in complex hillslopes. Hydrology and Earth System Sciences, 14(6), 891.
21)   Sabzevari T,  Noroozpour S (2014) Effects of hillslope geometry on surface and subsurface flows. Hydrogeology journal, 22(7), 1593-1604.
22)   Silveira, A., J. R. C. B. Abrantes, J. L. M. P. de Lima, and L. C. Lira. 2016. “Modelling runoff on ceramic tile roofs using the kinematic wave equations.” Water Sci. Technol. 73 (11): 2824–2831. https://doi.org/10.2166 /wst.2016.148.
23)   Simunek J, Sejna M, van Genuchten M.Th (1999) The HYDRUS-2D software package for simulating the two dimensional movement of water, heat, and multiple solutes in variably-saturated media, IGWMC-TPS 53, version 2, Int. Ground Water Modeling Center, Colorado School of Mines, Golden, Colo.
24)   Šimůnek J, M Šejna, and M.Th. van Genuchten (2006) Th e HYDRUS soft ware package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical Manual, Version 1.0. PC Progress, Prague, Czech.
25)   Singh J, Altinakar M.S,  Ding Y (2014). Numerical modeling of rainfall-generated overland flow using nonlinear shallow-water equations. Journal of Hydrologic Engineering, 20(8), 04014089.
26)   Singh V. P (2017) Kinematic wave theory of overland flow. Water Resources Management, 1-14.
27)   Skaggs T. H, Trout T.J, Simunek J, Shouse P. J (2004) Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. J. Irrig. Drain. Eng., 1305, 304–310.
28)   Smith R. E , Woolhiser D.A (1971) Overland flow on an infiltrating surface. Water Resources Research, 7(4), 899-913.
29)   Smith R.E, Parlange J.Y (1978) A parameter-efficient hydrologic infiltration model. Water Resour. Res. 14, 533–538.
30)   VanderKwaak J.E, Loague K, (2001) Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour. Res. 37, 999–1013.
31)   Wallach R, Grigorin G,  Byk, J.R (1997) The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth. Journal of Hydrology, 200(1-4), 243-259.
32)   Yusoff, I. M., Ujang, M. U., & Rahman, A. A. (2009). 3D Dynamic Simulation and Visualization for GIS-based Infiltration Excess Overland Flow Modelling. In 3D Geo-Information Sciences (pp. 413-430). Springer, Berlin, Heidelberg