شبیه‌سازی بیلان آب حوضه آبخیز با استفاده از مدل SWAT (مطالعه موردی: حوضه قره سو استان گلستان)

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

2 دانشیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

چکیده

در این تحقیق، بیلان آبی حوضه قره‌‌سو استان گلستان با استفاده از مدل SWAT شبیه‌‌سازی شد. هدف اصلیِ تحقیق، آزمون کارایی مدل و قابلیت استفاده از آن به عنوان شبیه‌ساز بیلان آب در آبخیز قره‌سو می‌باشد. ابتدا اطلاعات ورودی مدل تهیه و مدل با این داده‌ها اجرا شد. به‌‌منظور مشخص کردن پارامترهای مهم مدل، آنالیز حساسیت با روش "هر بار یک پارامتر" انجام شد. سپس واسنجی مدل به‌صورت دستی و سپس با روش خودکارِ SUFI2 انجام شد. به‌منظور کاهش عدم قطعیت، اجزای مختلف بیلان آب در واسنجی در نظر گرفته شد و از داده‌های مشاهداتی چندین ایستگاه اندازه‌گیری به‌طور هم‌زمان استفاده شد. نتایج تحقیق نشان داد که، مدل SWAT برای شبیه‌سازی هیدرولوژی حوضه قره‌سو از کارایی مناسبی برخوردار است. دقت شبیه‌‌سازی دبی ماهانه در ایستگاه سیاه‌آب (خروجی حوضه) با استفاده از شاخص نش-ساتکلیف در دوره واسنجی 6/0 و با شاخص R2، 65/0، و در دوره اعتبارسنجی به ترتیب 36/0 و 62/0 بدست آمد. برای شاخص‌های ارزیابی عدم قطعیت نیز مقادیر قابل قبولی بدست آمد. P-فاکتور و R-فاکتور، برای دوره واسنجی به ترتیب 77/0 و 23/1 و برای دوره اعتبارسنجی به ترتیب 97/0 و 73/1 محاسبه شد. بر اساس نتایج شبیه‌سازیِ مدل، به‌طور متوسط حدود 67% بارش از طریق تبخیر و تعرق وارد اتمسفر می‌شود، 17% آن به‌صورت رواناب سطحی و جریان جانبی به آبراهه‌ها وارد می‌شود و 16% نفوذ یافته و وارد سفره زیرزمینی می‌شود. این تحقیق اطلاعات مفیدی را در مورد بیلان آبی حوضه قره‌سو فراهم نموده و به برنامه‌ریزی دقیق‌تر منابع آب در این حوضه کمک می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Water balance simulation for the Ghare-Sou Watershed, Golestan, using the SWAT model

نویسندگان [English]

  • Arash Zare Garizi 1
  • Ali Talebi 2
چکیده [English]

In this study, water balance of Ghare-sou watershed, was simulated using the SWAT model. The main objective of the study was to test the performance of SWAT and the feasibility of using this model as a water balance simulator for Ghare-sou watershed. The required input data were collected and the model was run. A parameters sensitivity analysis was performed using OAT method to determine the most important parameters. Model calibration was first performed manually and then automatically using SUFI2 algorithm. In order to reduce uncertainty, a number of hydrological components as well as a number of subcatchments were used simultaneously in the calibration and validation. The results showed that, the SWAT model performance for simulation of Ghare-sou watershed hydrology is satisfactory. During calibration, the simulated monthly flows in Syah-ab station (outlet of the watershed) matched the observed values with a Nash-Sutcliffe coefficient of 0. 6 and a coefficient of determination (R2) 0.65. These values were 0.36 and 0.62 during the validation. The values obtained for uncertainty assessment indicators were also satisfactory. P-factor and R-factor for the calibration period were 0.77 and 1.23 respectively and for the validation period were 0.97 and 1.73 respectively. Based on the model simulation, about 67% of the precipitation returns to the atmosphere through evapotranspiration process, about 17% runs off over land and moves toward the stream networks, about 16% percolates to the aquifer. This study provides useful information about water balance of the Ghare-sou watershed and helps better water resources planning for this watershed.

کلیدواژه‌ها [English]

  • SUFI2 algorithm
  • Ghare-sou watershed
  • Water balance simulation
  • SWAT Model
1)                  اکبری ح، 1389. شبیه‌سازی جریان روزانه رودخانه چهل‌چای استان گلستان با استفاده از مدل SWAT. پایان‌نامه کارشناسی ارشد گروه آبخیزداری. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. 120 ص.
2)         امیری م، 1385. کالیبراسیون و ارزیابی مدل هیدرولوژیکی SWRRB به منظور شبیه‌سازی رواناب (مطالعه موردی: حوضه آبخیز کسیلیان). پایان‌نامه
 
3)                  کارشناسی ارشد گروه آبخیزداری. دانشگاه مازندران. 134 ص.
4)         بوستانی ف، گوهرگانی ا، 1393. شبیه سازی کیفیت آب رود بشار در محدوده شهر یاسوج با استفاده از شبیه QUAL2K. مجله مهندسی منابع آب، 23: 98-85
5)                  تلوری ع ر، 1375. مدل‌های هیدرولوژیکی به زبان ساده. انتشارات دانشگاه تهران. 401 ص.
6)                  خلیقی‌سیگارودی ش، زینتی شعاع ط، سلاجقه ع، کهندل ا و مرتضایی ق، ۱۳۸۸. شبیه‌سازی بارش–رواناب به روش نیمه‌توزیعی در حوضه‌های آبخیز با آمار کم (مطالعه موردی: حوزه آبخیز لتیان). مجموعه مقالات پنجمین همایش ملی علوم و مهندسی آبخیزداری ایران (مدیریت پایدار بلایای طبیعی) گرگان. ص 180- 188.
7)                  رستمیان ر، 1385. تخمین رواناب و رسوب در حوزه بهشت آباد در کارون شمالی با استفاده از مدل SWAT 2000. پایان‌نامه کارشناسی ارشد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان. 150 ص.
8)                  رفاهی ح، ۱۳۸۶. فرسایش آبی و کنترل آن. انتشارات دانشگاه تهران. 672 ص.
9)                  شرکت سهامی آب منطقه‌ای گلستان، 1388. گزارش بیلان آب در محدوده مطالعاتی گرگان. 93 ص.
10)              Abbaspour K.C, Johnson C.A, van Genuchten M.Th. 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal 3(4): 1340-1352.
11)              Abbaspour K.C, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333 (2-4), 413–430.
12)              Abbaspour K.C. 2011. User Manual for SWAT-CUP. SWAT Calibration and Uncertainty Analysis Programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland, 95 p. Available at: http://www.eawag.ch/organisation/abteilungen/siam/software/swat/index_EN.
13)              Alansi A.W, Amin M.S.M, Abdul Halim G, Shafri H.Z.M, Aimrun W. 2009. Validation of SWAT model for stream flow simulation and forecasting in Upper Bernam humid tropical river basin, Malaysia. Hydrology and Earth System Sciences 6: 7581–7609.
14)              Arnold J.G, Allen P.M, Muttiah R, Bernhardt G. 1995. Automated base flow separation and recession analysis techniques. Ground Water 33(6): 1010-1018.
15)              Arnold J.G, Srinivasan R, Muttiah R.S, Williams J.R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resource Association 34 (1): 73–89.
16)              Bekiaris I.G, Panagopoulos I.N, Mimikou N.A. 2005. Application of the SWAT model in the Ronnea catchment of Sweden. Global NEST Journal 3 (7): 252-257.
17)              Faramarzi M, Abbaspour K.C, Schulin R, Yang H. 2009. Modelling blue and green water resources availability in Iran. Hydrological Processes 23: 486–501.
18)              Feyereisen G.W, Strickland T.C, Bosch D.D, Sullivan D.G. 2007. Evaluation of SWAT manual calibration and input parameter sensitivity in the Little river watershed. American Society of Agricultural and Biological Engineers 50: 843−855.
19)              Gassman P.W, Reyes M.R, Green C.H, Arnold J.G. 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE 50(4):1211–1250.
20)              Hosseini M. 2010. Effect of Landuse Changes on Water Balance and Suspended Sediment Yield of Taleghan Catchment, Iran. . PhD Thesis, University Putra Malaysia.
21)              Moriasi D.N, Arnold J.G, Van Liew M.W, Bingner R.L, Harmel R.D, Veith T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50 (3): 885-900.
22)              Ndomba P.M, Birhanu B.Z. 2008. Problems and Prospects of SWAT Model Applications in NILOTIC Catchments. Nile Basin Water Engineering Scientific Magazine 1: 41-52.
23)              Neitch S.L, Arnold J.G, Kiniry J.R, Williams J.R. 2005. Soil and water assessment tool documentation, (user’s manual). 494 pp.
24)              Ritchie J.T. 1972. A model for predicting evaporation from a row crop with incomplete cover. Water Resources Research 8: 1204-1213.
25)              Sloan P.G, Morre I.D, Coltharp G.B, Eigel J.D. 1983. Modeling surface and subsurface stormflow on steeply-sloping forested watersheds. Water Resources Research Institute, Report 142. University of Kentucky, Lexington.
26)              Williams J.R. 1969. Flood routing with variable travel time or variable storage coefficients. Transactions of ASAE 12(1): 100-103.
27)              Xu Z.X, Pang J.P, Liu C.M, Li J.Y. 2009. Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrological Processes 23(25), 3619-3630.