1. Adams, N.A., and Shariff, K. 1996. Ahigh resolution hybrid compact ENOscheme for shock-turbulenceinteraction problems. J. Comput. Phys127: 27-51.
2. Chorin, A.J. 1997. A numericalmethod for solving incompressibleviscous flow problems. J. Comput.Phys 135: 118-125.
3. Chung, T.J. 2002.Computational fluiddynamics.DOI;10.10179780511606205: 106-119.
4. Cox, R.A., and Nishikawa, T. 1991. Anew total variation diminishingscheme for the solution of convectivedominate solute transport. WaterResour. Res. 27: 2645-2654.
5. Deister, F., Tremel, U., Hassan, O.and Weatherill, N.P. 2004. Fullyautomatic and fast mesh sizespecification for unstructured meshgeneration. Engineering withcomputers 20: 237-248.
6. Dreyer, J. (1990). Finite volumesolution to the steady incompressibleEuler Equation on UnstructuredTriangular Meshes. M.Sc. Thesis,MAE Dept., Princeton University.
7. Dumona, A., C. Allery, and A.Ammarb. 2011. Proper generaldecomposition (PGD) for theresolution of NavierStokesequations.J.Comput. Phys. 230: 1387-1407.
8. Ghia, U., Ghia, K.N. and Shin, C.T.1982. High-Re solutions for incomp-ressible flow using the Navier-Stokesequations and a multigrid method. J.Computational Physics 48: 387-411.
9. Harten, A. 1983. A High resolutionscheme for the computation of weaksolutions of hyperbolic conservationlaws. J. Computational Physics 49.
10. Jameson, A., Schmidt, W., and Turkel,E.. 1981. Numerical solutions of theEuler equations by finite volumemethods using Runge-Kutta timestepping schemes. AIAA paper Series:1981-1259.
11. Koseff, J.R., and Street, R.L. 1984. Onend wall effects in a lid driven cavityflow. Journal of fluids engineering106: 385–389.
12. Koseff, J.R., and Street, R.L. 1984.Visualization studies of a shear driventhree- dimensional recirculating flow.ASME J. Fluids Eng.106: 21– 29.
13. Leveque, R.J. 1992. Numericalmethods for conservation laws.Lectures in mathematics. Brikhauserpublisher, 2nd edition. ISBN3764327235, ISBN 0817627235.
14. Liao, S.J., and Zhu, J.M. 1996. AShort note on higher-orderstremfunction- vorticity formulation of2-D steady state Navier-Stokesequations. Inter. J. Numerical Methodsin Fluids 22: 1–9.
15. Li, C.W., and Zhu, B. 2002. A sigmacoordinate 3D k–model forturbulent free surface flow over asubmergedstructure. Appliedmathematical modeling. 26: 1139-1150.
16. Manouzi, H. 2005. Numerical simulationsof the Navier-Stockes problemwith hyper dissipation. Excerpt fromthe Proceedings of the COMSOLMultiphysics User's Conference.
17. Mavriplis, D., Jameson, A. 1990.Multigrid solution of the NavierStokesequations on triangular meshes.AIAA Journal. Vol. 28(8).
18. Spencer, P. 2010. Finite differencemethods and solving the level setequations numerically. Contents-1.Domainsite:http://impact.byu.edu/Image Processing Seminar/ FiniteDifference Notes.pd
19. Sabbagh-Yazdi S. R., N. E.Mastorakis, F. Meysami, and F.Namazi-Saleh. .2008. 2D Galerkinfinite volume solution of steadyinviscid / viscous / turbulent artificialcompressible flow on triangularmeshes. Inter. J. Computers. 2: 39-46.
20. Schlichting, H. 1979. Boundary-Layertheory (7th edition). New York:McGraw Hill.
21. Tannehill, J.C., Anderson, D.A. andPletcher, R.H. 1997.Computationalfluid mechanics and heat transfer.Second edition. Taylor & FrancisGroup. ISBN; 978-1-56032-046-3:649-677.
22. Wood, I.R. 1991. Air entrainment infree-surface flows. Hydraulicstructures design manual: No.4.Hydraulic design considerations. A. A.Balkema. Rotterdam. TheNetherlands.
23. Zhaong, X. 1998. High order finitedifference schemes for numericalsimulation of hypersonic boundarylayer transition. J. Comput. Phys. 144:622-709.